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Abstract: 

In this paper, we present a new integer sequence is developed from the recurrence 

relation )0,(,,J 12n    nn JJ with the initial conditions bJa,J 10  where a,b are 

not zeros simultaneously, is illustrated. 
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Introduction:  

It is well known that the Fibonacci sequence is famous for its wonderful and amazing properties. 

Fibonacci composed a number text in which he did important work in number theory and the 

solution of algebraic equations. The equation of rabbit problem posed by Fibonacci is known as 

the first mathematical model for population growth. From the statement of rabbit problem, the 

famous Fibonacci numbers can be derived. This sequence of  Fibonacci numbers is extremely 

fruitful and appears in different areas in mathematics and science. 

          

 The Fibonacci sequence, Lucas sequence, Pell sequence, Pell-Lucas sequence, Jacobsthal 

sequence and Jacobsthal –Lucas sequence are most prominent examples of recursive sequences. 
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 The Fibonacci sequence [7] is defined by the recurrence relation  2,F 21k   kFF kk  

with .1,0F 10  F  The Lucas sequence [7] is defined by the recurrence 

relation 2,L 21k   kLL kk  with .1,2L 10  L  

            

The second order recurrence sequence has been generalized in two ways mainly, first by 

preserving the initial conditions and second by preserving the recurrence relation. In this context, 

one may refer [10]. 

  

D. Kalman and R.Mena [6] generalized the Fibonacci sequence by 2,F 21n   nbFaF nn  

with .1,0F 10  F   

 

A. F. Horadam[5] defined generalized the Fibonacci sequence }{Hn  

by 3,H 21n   nHH nn with qpHp  21 ,H  where p and q are arbitrary integers. 

 

B. Singh, O. Sikhwal and S. Bhatnagar [11], defined Fibonacci like sequence by recurrence 

relation 3,S 21k   kSS kk with .2,2S 10  S The associated initial conditions 10S andS  are the 

sum of the Fibonacci and Lucas sequence respectively. i.e, .111000S LFandSLF    

 

L.R. Natividad [8], Deriving a formula in solving Fibonacci like sequence. He found missing 

terms in Fibonacci like sequence and solved by standard formula. 

 

V.K. Gupta, V.Y. Panwar and O. Sikhwal [3], defined generalized Fibonacci sequences and 

derivd its identies connection formulae and other results. V.K. Gupta, V.Y. Panwar and N.Gupta 

[4], stated and derived identies for Fibonacci like sequence. Also, described and derived 

connection formulae and negation formualae for Fibonacci like sequence. B.Singh, V.K.Gupta 

and V.Y.Panwar [12], present many combination of higher powers of Fibonacci like sequence. 
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The k-Fibonacci numbers defined by Falco ‘n’ Plaza.A [1], depending only an one integer 

parameter k as follows, for any positive real number k, the Fibonacci sequence is defined 

recurrently by  2,F 2,1,kn,   nFkF nknk  with .1,0F 1,k,0  kF  

 

In [2], A.D. Godase and M.B. Dhakne have presented some properties of k-Fibonacci and k-

Lucas numbers by using matrices.  

 

In [9], Yashwant , K.Panwar, G.P. Rathore and Richa Chawla have established some interesting 

properties of k-Fibonacci like numbers. 

 

In this communication, a new integer sequence  is developed by defining the recurrence 

releation )0,(,,J 12n    nn JJ with the initial conditions bJa,J 10  where a,b 

are not zeros simultaneously. Various interesting relations among these numbers are exhibited.   

 

Method of Analysis: 

In this section a new integer sequence generated from the recurrence relation 

 )0,(,,J 12n    nn JJ with the initial conditions bJa,J 10  where a,b are not 

zeros simultaneously, is illustrated   

Consider a sequence }{Jn defined by  

)0,(,,J 12n    nn JJ                                                      (1) 

with the initial conditions 

bJa,J 10    

where a,b are not zeros simultaneously. 

The auxiliary equation associated with the recurrence relation (1) is given by 

    0m2  m  

whose roots are        2

4
,

2

4
m

2

2

2

1

 



 m  

Note that                     2121 , mmmm . 

Thus, the general solution of (1) is  
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   .21

nn

n BmAmJ   

From the initial conditions, we infer that  

   bBmAmaBA  21;  

Solving for A and B,  we get  

   .;
21

1

21

2

mm

bam
B

mm

amb
A









  

Thus, a notable sequence }{Jn whose terms are given below, is obtained. 

  )(
)()(

J 21

21

2112
n sayBmAm

mm

mbammamb nn
nn





                                        (2) 

where 
21

1

21

2 )()(

mm

bam
andB

mm

amb
A









                                                                                     (3)  

The new sequence }{Jn is found to satisfy the following relations:  

Identities: 

(i).  








 

AB

JaJ kk

2

246  is a Nasty Number. 

Proof: 

                
22

2

2

1

2

2 )( kk

k BmAmJ   

                        = 
kkkk mABmmBmA 2

2

2

1

4

2

24

1

2 2  

                        = 
kkkkkkkk mABmAmBmAmBBmBmAmA 2

2

2

1

4

1

4

2

4

1

4

2

4

2

4

1 2)()(   

                             = 
kkk

k

k

k mABmAmJBBmJA 2

2

2

1

4

14

4

24 2][][   

  = )2(][ 2

2

2

1

4

2

4

14

kkkk

k mmmmABJBA   

  = 
22

2

2

14 ][][ kk

k mmABJBA   

  = 
22

2

2

14 ][ kk

k mmABaJ   

Hence,  








 

AB

JaJ kk

2

246  is a Nasty Number. 

(ii). 











 kkk

AB

JaJ 2
2

24 46   is a Nasty Number. 
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Proof: 

  
kkkkkk mmmm

AB

JaJ 2

2

2

1

22

2

2

1

2

24 4][ 


  

  
22

2

2

1

2
2

24 ][4 kkkkk mm
AB

JaJ
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
         

Hence, 











 kkk

AB

JaJ 2
2

24 46   is a Nasty Number. 

 

 

(iii). .02,)2( 42

2
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Proof: 
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s
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(5)        

Using (5) in (4), we get 

                        .02,)2( 42
2

222
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    = )(2)( 2

12

2

2121

2
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skkskksksksksk mmmmABmABmBmAm    

   =  )2( 21

2

2
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2
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Using (5) in (6), we get 
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
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Hence,            ]22[
2
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1
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1
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i
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(v). 






  

k

skskk

AB

JJJ



2

26  is a Nasty Number. 

Proof: 

 From the identity (iv) we have 

  
2

21

2

2 )( ss

k
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JJJ


 

  

  






 
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k
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JJJ
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2

26  is a Nasty Number. 

(vi). 








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k

skskk
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JJJ

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2
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 is a Nasty Number. 

Proof: 

 Since, 
2

21

2
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k

skskk mm
AB
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

 
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              = 
sss mm 4)( 2
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Using (5) in (7), we get 

              ]2[]2[
)(

2
2
1

12

1

2
2

2
1

12

1

22 iik
k

i

c
ksiis

s

i

c
sk

s
ksksk mmkmms

AB

aJJJ
ii











  





 

(viii). bJJJmm NN

N

k

k  





 1

1

0

21 ))(1()1)(1(   

Proof: 

   Since,    )(
1

0

21

1

0











N

k

kk
N

k

k BmAmJ  

   =  









1

0

1

0

21

N

k

N

k

kk mBmA  

   = 
1

1

1

1

2

2

1

1










m

m
B

m

m
A

NN

 

             )1)(1()1)(1()1)(1( 2112

1

0

21  




NN
N

k

k mmBmmAJmm  

            = )1()1( 21211212  NNNN mmmmBmmmmA  

     = )()()()()( 121122121221

NNNNNNNN AmBmAmmBmBmAmmBmAmBmAmBA    

                         = 11212 )()(  NNN JJmmBmAmJa  

           = )()1( ! bJJa NN      

           = bJJa NN  1)1()1(   

           = bJJa NN  1))(1(   

Hence,      bJJJmm NN

N

k

k  





 1

1

0

21 ))(1()1)(1(   



             IJESR        Volume 4, Issue 8        ISSN: 2347-6532 
__________________________________________________________  

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories 
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A. 

International Journal of Engineering & Scientific Research 
http://www.ijmra.us 

 
44 

August 
2016 

(ix). 
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2  
 is written as sum of two squares. 

  Proof: 
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(x). 

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   Hence, 

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




  

AB

JJJ sksk

2

226  is a Nasty Number. 

Conclusion: 

 In this paper, we have presented a remarkable integer sequence  developed by the 

recurrence relation )0,(,,J 12n    nn JJ with the initial conditions 

bJa,J 10  where a,b  are not zeros simultaneously. One may search for other choices of 

integer sequences with suitable initial conditions. 
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