International Journal of Management, IT & Engineering Vol. 8 Issue 7, July 2018, ISSN: 2249-0558 Impact Factor: 7.119

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

<u>4-PRIME CORDIAL LABELING OF SOME DEGREE</u> <u>SPLITTING GRAPHS</u>

Rajpal Singh*

R. Ponraj **

R.Kala****

	Abstract				
Keywords:	Let G be a (p,q) graph. Let $f : V(G) \rightarrow \{1,2,\ldots,k\}$ be a				
Complete graph;	map. For each edge uv, assign the label $gcd (f(u), f(v))$. f				
cycle;	is called k-prime cordial labelling of G if $ v_f(i)-v_f(j) \leq 1$,				
corona;	$i,j{\in}\{1,2,{\ldots},k\}$ and $ ef(0)-ef(1) \leq\!\!1$ where $v_f(x)$ denotes				
bistar;	the number of vertices labelled with $x_{f}(1)$ and $e_{f}(0)$				
jelly fish	respectively denote the number of edges labelled with 1				
	and not labelled with 1. A graph with a k-prime cordial				
	labelling is called a k-prime cordial graph. In this paper				
	we investigate 4-prime cordial labelling behaviour of				
	degree splitting graph of path, jelly fish, crown and bistar				
	and some more graphs.				

* Research Scholar, Department of Mathematics, Manonmanium Sindaranar University, Abishekapatti, Tirunelveli-627012, Tamilnadu, India.

^{**} Assistant Professor, Department of Mathematics, Sri Paramakalyani College, Alwarkurichi - 627412, Tamilnadu, India

^{***} Professor, Department of Mathematics, Manonmanium Sindaranar University, Abishekapatti, Tirunelveli-627012, Tamilnadu, India

1. Introduction

In this paper graphs are finite, simple and undirected. Let G be a (p, q) graph where p refers the number of vertices of G and q refers the number of edge of G. The number of vertices of a graph G is called order of G, and the number of edges is called size of G. The concept of degree splitting graph was introduced by R. Ponraj and S.Somasundaram in [5]. Let G = (V,E) be a graph with $V = S_1 \cup S_2 \cup \cdots \cup S_t \cup T$ where each S_i is a set of vertices having at least two vertices and having the same degree and $T = V - \bigcup_{i=1}^{t} S_i$. The degree Splitting graph of G denoted by DS

(G) is obtained from G by adding vertices $w_1, w_2 \dots, w_t$ and joining w_i to each vertex of S_i $(1 \le i$ \leq t). Let G₁, G₂ respectively be (p₁, q₁), (p₂, q₂) graphs. The corona of G₁ with G₂, G₁ \bigcirc G₂ is the graph obtained by taking one copy of G_1 and p_1 copies of G_2 and joining the ith vertex of G_1 with an edge to every vertex in the i^{th} copy of G_2 . The bistar $B_{m,n}$ is the graph obtained by making adjacent the two central vertices of $K_{1,m}$ and $K_{1,n}$. Jelly fish graphs J (m, n) obtained from a cycle C_4 : uvxyu by joining x and y with an edge and appending m pendent edges to u and n pendent edges to v. In 1987, Cahit introduced the concept of cordial labelling of graphs [1]. Sundaram, Ponraj, Somasundaram [6] have introduced the notion of prime cordial labeling. Also they discussed the prime cordial labeling behaviour of various graphs. Recently Ponraj et al. [8], introduced k-prime cordial labeling of graphs. In [9, 10] Ponraj et al. studied the 4-prime cordial labeling behaviour of complete graph, book, flower, mC_n, wheel, gear, double cone, helm, closed helm, butterfly graph, and friendship graph and some more graphs. In this paper we study about the 4-prime cordiality of degree splitting graph of path, jelly fish graph, crown, bistar, subdivision of a star, subdivision of bistar ad subdivision of crown. A binary vertex labeling f : V $(G) \rightarrow \{0, 1\}$ of graph G with induced edge labeling $f: E(G) \rightarrow \{0, 1\}$ defined by f(uv) =f(u)f(v) is called a product cordial labeling if $|v_f(0) - v_f(1)| \le 1$ and $|e_f(0) - e_f(1)| \le 1$, where $v_f(0) = v_f(1) \le 1$. (0), $v_f(1)$ denote the number of vertices of G having labels 0, 1 respectively under f and $e_f(0)$, $e_f(0)$ (1) denote the number of edges of G having labels 0, 1 respectively under f. A graph G is product cordial if it admits product cordial labeling [7]. Let x be any real number. Then |x| stands for the largest integer less than or equal to x and [x] stands for smallest integer greater than or equal to x. Terms that are not defined here, follow from Harary [3] and Gallian [2].

2. Main results

Observation 2.1. A 2-prime cordial labeling is a product cordial labeling. [7]

Proof: Obviously, since 2-Prime cordial labeling produces same vf(x) and $ef(x) \{ x = 0,1 \}$ as in product cordial labeling.

Theorem 2.1. DS(P_n) is 4-prime cordial for all n.

Proof. Let P_n be the path $u_1u_2 \ldots u_n$. Let $V(DS(P_n)) = V(P_n) \cup \{u, v\}$ and $E(DS(P_n)) = E(P_n) \cup \{uu_1, uv_n, vu_i : 2 \le i \le n - 1\}$. Clearly $DS(P_n)$ has n + 2vertices and 2n - 1 edges. The proof is divided into four cases.

Case 1. $n \equiv 0 \pmod{4}$.

Let n = 4t. Assign the label 2 to the vertices $u_1, u_2, \ldots u_t$ and 4 to the vertices $u_{t+1}, u_{t+2}, \ldots, u_{2t}$. Then assign the label 1 and 3 alternatively to the remaining vertices. Finally assign the label 2, 4 respectively to the vertices u, v.

Case 2. $n \equiv 1 \pmod{4}$.

As in case 1 assign the label to the vertices u, v, $u_i(1 \le i \le n - 1)$. Finally assign the label 3 to the last vertex u_n .

Case 3. $n \equiv 2 \pmod{4}$.

Assign the label to the vertices u, v, u_i , $(1 \le i \le n - 1)$ as in case 2. Then assign the label 1 to the

vertex u_n . Finally interchange the labels of $u \frac{n}{2} + 2$ and $u \frac{n}{2} + 3$

Case 4. $n \equiv 3 \pmod{4}$.

Assign the label to the vertices u, v, u_i , $(1 \le i \le n - 1)$ as in case 3. Then assign the label 2 to the vertex u_n .

Theorem 2.2. $DS(C_n \odot K_1)$ is 4-prime cordial for all values of n.

Proof. Let V ($C_n \odot K_1$) = { u_i , $v_i : 1 \le i \le n$ } and E($Cn \odot K1$) = { $u_i u_{i+1}$, $u_i v_i : 1 \le i \le n - 1$ } U { $u_n u_1$, $u_n v_n$ }. The graph DS($C_n \odot K_1$) is obtained by adding the new vertices u, v and joining u to u_i (1 $\le i \le n$), v to v_i (1 $\le i \le n$). We nowgive the label to the vertices of DS($C_n \odot K_1$). Assign the label 2, 1 respectively to the vertices u and v. Next assign the label 2 to the vertices $u_1, u_2, \ldots, u_{\lfloor \frac{n}{2} \rfloor}$ and 4

to the vertices $u_{\lfloor \frac{n}{2} \rfloor +1}, u_{\lfloor \frac{n}{2} \rfloor +2}, ..., u_n$. Next assign the label 1 to the vertices $v_1, v_2, ..., v_{\lfloor \frac{n}{2} \rfloor}$ and 3 to the

vertices $v_{\lfloor \frac{n}{2} \rfloor + 1}$, $v_{\lfloor \frac{n}{2} \rfloor + 2}$, ..., v_n . The table 1 given below establish the labelling f is a 4-prime cordial labelling

labelling.

Nature of n	v _f (1)	v _f (2)	v _f (3)	v _f (4)	e _f (0)	e _f (1)
n is odd	$\frac{n+1}{2}$	$\frac{n+1}{2}$	$\frac{n+1}{2}$	$\frac{n+1}{2}$	2n	2n
n is even	$\frac{n}{2}$	$\frac{n+2}{2}$	$\frac{n}{2}$	$\frac{n+2}{2}$	2n	2n

Table 1.

Theorem 2.3. If $n \equiv 1, 3 \pmod{4}$, then $DS(B_{n,n})$ is 4-prime cordial.

Proof. Let V (DS(B_{n,n})) = {u, v, x, y, u_i, v_i : $1 \le i \le n$ } and E(DS(B_{n,n})) = {uv, uy, vy, uu_i, vv_i, xu_i, xv_i : $1 \le i \le n$ }. Clearly DS(B_{n,n}) has 2n + 4 vertices and 4n + 3 edges.

Case 1. $n \equiv 1 \pmod{4}$.

Let n = 4t + 1. Assign the label 2 to the vertices $u_1, u_2, \ldots, u_{2t+2}$. Next assign the label 4 to the vertices $u_{2t+3}, u_{2t+4}, \ldots, u_{4t+1}, x, y$ and u. Next assign the label 1 to the vertices v_1, v_2, \ldots, v_{2t} . Finally assign the label 3 to the vertices $v_{2t+1}, v_{2t+2}, \ldots, v_{4t+1}$.

Case 2. $n \equiv 3 \pmod{4}$.

As in case 1 assign the label to the vertices u, v, x, y, u_i, v_i $(1 \le i \le n - 2)$. Finally,assign the labels 2, 4, 1, 3 respectively to the vertices u_{n-1}, u_n, v_{n-1}, v_n. Obviously this vertex labelling is a 4-prime cordial labelling of DS(B_{n,n}), n = 1, 3 (mod 4) follows from Table 2.

Nature of n	v _f (1)	v _f (2)	v _f (3)	v _f (4)	e _f (0)	e _f (1)
n = 4t+1	2t+1	2t+2	2t+1	2t+2	8t+1	8t+2
n = 4t+3	2t+2	2t+3	2t+2	2t+3	8t+3	8t+4

Table 2.

Theorem 2.4. Degree splitting graph of a subdivision of a star $K_{1,n}$, $DS(S(K_{1,n}))$ is 4-prime cordial for all values of n.

Proof. Let V (DS(S(K_{1,n}))) = { $u,w_i, v_i, v,w : 1 \le i \le n$ } and E(DS(S(K_{1,n}))) = { $uw_i,w_iv_i, vv_i,ww_i : 1 \le i \le n$ }. Obviously DS(K_{1,n}) has 2n + 3 vertices and 4nedges.

Case 1. $n \equiv 0 \pmod{4}$.

Let n = 4t, $t \in N$. Consider the vertex u. Assign the label 2 to the vertex u. Next assign the labels 4, 1 to the vertices w, v respectively. We now consider the vertices of degree 3. Assign the label 2 to the vertices w_1, w_2, \ldots, w_{2t} and 4 to the vertices $w_{2t+1}, w_{2t+2}, \ldots, w_{4t}$. Now we move to the vertices of degree 2. Assign the label 1 to the vertices v_1, v_2, \ldots, v_{2t} and 3 to the remaining vertices $v_{2t+1}, v_{2t+2}, \ldots, v_{4t}$.

Case 2. $n \equiv 1 \pmod{4}$.

Let n = 4t + 1. As in case 1, assign the labels to the vertices u, v, w, v_i, w_i($1 \le i \le n - 1$). Finally assign the labels 4, 3 to the vertices w_n, v_n respectively.

Case 3. $n \equiv 2 \pmod{4}$.

In this case assign the label to the vertices u, v, w, v_i , w_i $(1 \le i \le n-1)$ as in case2. Next assign the labels 2, 1 to the vertices w_n , v_n respectively.

Case 4. $n \equiv 3 \pmod{4}$.

As in case 3, assign the labels to the vertices u, v, w, v_i , $w_i(1 \le i \le n-1)$. Finally assign the labels 3, 4 to the remaining vertices v_n , w_n respectively.

Nature of n	v _f (1)	v _f (2)	v _f (3)	v _f (4)	e _f (0)	e _f (1)
4t	2t+1	2t+1	2t	2t+1	8t	8t
4t+1	2t+1	2t+1	2t+1	2t+2	8t+1	8t+1
4t+2	2t+2	2t+2	2t+1	2t+2	8t+2	8t+2
4t+3	2t+2	2t+2	2t+2	2t+3	8t+3	8t+3
T 11 0						

The following table 3 establish that this vertex labeling f is a 4-prime cordial labeling.

Table 3

Theorem 2.5. DS(J(n, n)) is 4-prime cordial.

Proof. Let V (DS(J(n, n))) = {u, v, x, y,w₁,w₂,w₃} \cup {u_i, v_i : 1 ≤i≤ n}, and E(DS(J(n, n)) = {uy, vy, uw₁, uw₃, vw₁, vw₃,w₁w₂,w₂w₃} \cup {uu_i, vv_i, xu_i, xv_i :1 ≤i≤ n}. Clearly DS(J(n, n)) has 2n + 7 vertices and 4n + 8 edges.

Case 1. $n \equiv 0 \pmod{4}$.

Let n = 4t. Assign the label 2 to the vertices $u_1, u_2, \ldots, u_{2t+2}$. Next assign the label 4 to the vertices $u_{2t+3}, u_{2t+4}, \ldots, u_4t$. Then assign the label 4 to the vertices u, x, y, w_3 . Assign the label 1 to the vertex v. Next assign the label 1 to the vertices v_1, v_2, \ldots, v_{2t} . Finally assign the remaining non-labeled vertices with 3.

Case 2. n $\equiv 1 \pmod{4}$.

Let n = 4t + 1. In this case, assign the label 2 to the vertices $u_1, u_2, \ldots, u_{2t+3}$. Next assign the label 4 to the vertices $u_{2t+4}, u_{2t+5}, \ldots, u_{4t+1}$. Next assign the label 4 to the vertices x, u, v, y. Next assign the label 1 to the vertices $v_1, v_2, \ldots, v_{2t+2}$. Finally assign the remaining non-labeled vertices with 3.

Case 3. $n \equiv 2 \pmod{4}$.

As in case 2 assign the label to the vertices u_i , v_i $(1 \le i \le n - 1)$, u, v, x, y, w_1 , w_2 , w_3 . Finally assign the label 4, 3 respectively to the vertices u_n , v_n .

Case 4. $n \equiv 3 \pmod{4}$.

Assign the label to the vertices u_i , $v_i(1 \le i \le n - 1)$, u, v, x, y, w_1 , w_2 , w_3 as in case 3. Finally assign the label 2, 1 respectively to the vertices u_n , v_n .

The following table 4 establish that the above vertex labeling f is a 4-prime cordial labeling.

Nature of n	v _f (1)	v _f (2)	v _f (3)	v _f (4)	e _f (0)	e _f (1)
$\mathbf{n} \equiv 0 \pmod{4}$	2t+1	2t+3	2t+2	2t+2	8t+4	8t+4
n ≡1 (mod 4)	2t+2	2t+3	2t+2	2t+2	8t+6	8t+6
$n \equiv 2 \pmod{4}$	2t+2	2t+3	2t+3	2t+3	8t+8	8t+8
$n \equiv 3 \pmod{4}$	2t+3	2t+4	2t+3	2t+3	8t+10	8t+10

Table 4

Example 2.1. A 4-prime cordial labeling of J(5, 5) is given in Figure 1.

Example 2.2. A 4-prime cordial labeling of J(6, 6) is given in Figure 2.

Figure 2

Example 2.3. A 4-prime cordial labeling of J(7, 7) is given in Figure 3.

Figure 3

Theorem 2.6. $DS(S(B_{n,n}))$ is 4-prime cordial for all values of n.

Proof. Let V (DS(S(B_{n,n}))) = {u, v,w, x,w₁,w₂} U {u_i, v_i, x_i, y_i: $1 \le i \le n$ } and E(DS(S(B_{n,n}))) = {uu_i, u_ix_i, vv_i, v_iy_i,w₁x_i,w₁y_i,w₂u_i,w₂v_i : $1 \le i \le n$ }. It iseasy to verify that DS(S(B_{n,n})) has 4n + 6 vertices and 8n + 4 edges. Assign the label 2 to the vertices u, u_i ($1 \le i \le n$). Next consider the vertices x_i, assign the label 4 to the vertices xi ($1 \le i \le n$), w₁, w₂. Assign the label 3 to the verticesv₁, v₂, y₁, y₂, . . . , y_{n-1}. Finally assign the label 1 to all the non-labeled vertices. This vertex labeling f is a 4-prime cordial labeling since v_f (1) = v_f (4) = n + 2,v_f (2) = v_f (3) = n + 1 and e_f (0) = e_f (1) = 4n + 2.

Theorem 2.7. $DS(S(C_n \odot K_1))$ is 4-prime cordial for all values of n.

Proof. We take the vertex set and edge set of $C_n \odot K_1$ as in Theorem 2.2. Let V (DS(S($C_n \odot K_1$))) = V ($C_n \odot K_1$) $\cup \{w_1, w_2, w\} \cup \{x_i, y_i : 1 \le i \le n\}$ and E(DS(S($C_n \odot K_1$))) = $\{wx_i, wy_i, y_iv_iu_ix_i, u_iy_i, w_1v_i, w_2u_i : 1 \le i \le n\}$. Clearly DS(S($C_n \odot K_1$)) has 4n+3 vertices and 8n edges. We now give the 4-prime cordial labeling to this graph. Assign the label to the vertices u_i ($1 \le i \le n$) and 4 to the vertices x_i ($1 \le i \le n$). Assign the label 3 to the vertices v_i ($1 \le i \le n$) and to the vertex w_1 . Finally assign the label 1 to the non-labeled vertices. If f is this vertex labeling then v_f (1) = v_f (2) = v_f (3) = n + 1, v_f (4) = n and e_f (0) = e_f (1) = 4n. This implies f is a 4-prime cordial labeling.

References

[1] I.Cahit, Cordial Graphs: A weaker version of Graceful and Harmonious graphs, Ars combin.,23 (1987) 201-207.

[2] J.A.Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics,17 (2015) #Ds6.

[3] F.Harary, Graph theory, Addision Wesley, New Delhi (1969).

[4] M.A.Seoud and M.A.Salim, Two upper bounds of prime cordial graphs, JCMCC, 75(2010)95-103.

[5] R. Ponraj and S. Somasundaram, On the Degree Splitting graph of a graph, National Academy Science Letter, 27(2004) 275-278.

[6] M.Sundaram, R.Ponraj and S.Somasundaram, Prime cordial labeling of graphs, J. IndianAcad. Math., 27(2005) 373-390.

[7] M. Sundaram, R. Ponraj and S. Somasundaram, Product cordial labeling of graphs, Bull. Pureand Appl. Sci. (Math. & Stat.), 23E (2004) 155-163.

[8] R.Ponraj Rajpal Singh, R.Kala and S. Sathish Narayanan, k-prime cordial graphs, J.Appl.Math. & Informatics, 34 (3-4) (2016) 227 - 237.

[9] R.Ponraj, Rajpal Singh and S. Sathish Narayanan, 4-prime cordiality of some classes of graphs, International Journal of Mathematical Combinatorics, 2 (2017), 105-115.

[10] R.Ponraj, Rajpal Singh and S. Sathish Narayanan, 4-prime cordiality of some cycle related graphs, Applications and Applied Mathematics, 12(1) (2017), 230-240.