
 IJMIE Volume 3, Issue 4 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

108

April
2013

DESIGN AND DEVELOPMENT OF AXI BASED MULTI

CHANNEL INTERRUPT CONTROLLER2

K.NAGA SAILAGA
*

TARANGINI.K
**

__

ABSTRACT:

Processors and peripherals usually communicate with each other with the use of interrupt.

Number of peripherals and processors are increasing and the processors have limited interrupt

ports which is far less than the total interrupt signals of peripherals and other co-processors in a

System-on-Chip (SoC). Flexibility of interrupt controller is more and more concerned with the

development of multi-million gate SoC.A configurable multichannel interrupt controller is

proposed to solve this problem. Interrupt priority is configurable for processor by accessing

registers through AXI (Advance extensible Interface) interface. The AMBA3 AXI is chosen

protocol defines a unidirectional channel architecture, which enables the efficient use of register

slices to pipeline the connection for higher speeds, or to enable the use of multiple clock domains

for low power Combination interrupt is also realized for one Interrupt Service Routing (ISR) to

service multiple interrupts at a time. Up to 60 interrupt inputs and 12 interrupt channels are

supported in This design and by using this design in many Embedded system design applications

and by this in one soc we connected number of peripherals device in one system on chip to

increases the performance of the system. Verilog is a hardware description language (HDL) used

for simulation of proposed algorithm.

Keywords: SOC, AMBA, ISR, AXI, INTERRUPT

* Assistant Professor, ECE, Vidya Jyothi Institute of Technology, Hyderabad

** Assistant Professor, ECE, SRINIDHI Institute of science andTechnology, Hyderabad

 IJMIE Volume 3, Issue 4 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

109

April
2013

I. INTRODUCTION:

 Design of System-on-Chip (SoC) receives a great deal of attention in recent days. The

number of peripheral used in one SoC becomes larger and larger, multiprocessor System-on Chip

(MPSoC) is also widely used. Processors and peripherals usually communicate with each other

with interrupt. With the development of SoC and MPSoC technique, the communication between

processors and peripherals becomes a problem as processors have limited interrupt ports which is

far less than the total interrupt signals of peripherals and other processors. Interrupt controller is

used to manage the numerous interrupts and assert the expected interrupt to processors.

 An interrupt controller can capture interrupt signals from peripherals and processors.

Interrupt signals are sorted by priority in the interrupt controller. Interrupt with the highest

priority level is asserted to processor for interrupt processing. Many structures of interrupt

controller s are neither priority configurable nor interrupt-combinable.

 An interrupt controller can capture interrupt signals from peripherals and processors.

Interrupt signals are sorted by priority in the interrupt controller. Interrupt with the highest

priority level is asserted to processor for interrupt processing. Many structures of interrupt

controller have been proposed by former papers "A high-precision timing and interrupt controller

to support distributed real-time operating systems," and “A self timed interrupt controller a case

study in asynchronous micro-architecture design," but they are neither priority configurable nor

interrupt-combinable

 In this paper a priority-configurable and interrupt combinable interrupt controller is proposed.

Priority of interrupts can be configured by software. Combination of up to 16 interrupts is also

supported. This interrupt controller has 60 interrupt inputs and 12 interrupt outputs. The processor

can access interrupt controller through AHB bus

1.1 Block Diagram and Description:

 IJMIE Volume 3, Issue 4 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

110

April
2013

Fig 1.1 Block Diagram of Design of A Configurable Multichannel Interrupt Controller Module

1.2 Module Description:

1.2.1 AXI Slave Interface module:

 This module generates necessary control signals to register module address and data width is

32bits and AXI Lite is used

1.2.2 Register Module:

 The register module is used to program and control operation of multiple interrupt

controllers.

1.2.3 Combinational Logic:

 The combinational logic module used to combine the incoming interrupts and its supports

combination up to 60 interrupt.

1.2.4 Configuration Logic:

 The configuration logic module is used to dynamically change the priority of the interrupts

1.2.5 Interrupt control logic:

 This Interrupt control logic it is heart of the core and it generates IRQ from the incoming

interrupt and depending upon the controlled signals from the register

2. INTERRUPTS:

2.1 Polled Approach Method:

 Sometimes it is necessary to have computer automatically execute one of a collection of the

special routine when ever certain conditions exist within a program or in the microcomputer

 IJMIE Volume 3, Issue 4 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

111

April
2013

system. For example, if it is necessary that microcomputer system should give response to devices

such as keyboard, sensors and other components when they request for service.

 The most common approach method of servicing such device is the polled approach. This is

where the processor must test each device in sequence and in effect”ask” each one if it needs

communication with the processor .It is easy that a large portion of the main program is looping

through this continuous polling cycle .Such a method would have a various decremental effect on

system throughput, thus limiting the tasks that could be assumed by the microcomputer and

reducing the cost effectiveness of using such device

Fig 2.1 polled approach method

2.1.1 Interrupt Method: An interrupt is a signal from a device attached to a computer or from a

program within the computer that causes the main program that operates the computer

(the operating system) to stop and figure out what to do next. Almost all personal (or larger)

computers today are interrupt-driven - that is, they start down the list of computer instruction s in

one program (perhaps an application such as a word processor) and keep running the instructions

until either (A) they can't go any further or (B) an interrupt signal is sensed. After the interrupt

signal is sensed, the computer either resumes running the program it was running or begins

running another program.

 Basically, a single computer can perform only one computer instruction at a time. But,

because it can be interrupted, it can take turns in which programs or sets of instructions that it

 IJMIE Volume 3, Issue 4 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

112

April
2013

performs. This is known as multitasking. It allows the user to do a number of different things at

the same time. The computer simply takes turns managing the programs that the user effectively

starts. Of course, the computer operates at speeds that make it seem as though all of the user's

tasks are being performed at the same time. (The computer's operating system is good at using

little pauses in operations and user think time to work on other programs. An operating system

usually has some code that is called an interrupt handler. The interrupt handler prioritizes the

interrupts and saves them in a queue if more than one is waiting to be handled. The operating

system has another little program, sometimes called a scheduler that figures out which program to

give control

Figure 2.1.1Interrupt method

2.2 Interrupt Mechanism:

 At the beginning of each FDE cycle, each bit in the interrupt register is checked in turn.

This register is a special register in the CPU that takes note of when an interrupt has happened.

Each bit in the register represents a different kind of interrupt. If a bit has been set, that would

indicate an interrupt has happened! The CPU has to decide whether to service the interrupt

immediately, or leave it till later.

 For example, if 2 interrupts have happened at the same time, one of them has to wait!

Which one? That depends upon which one is the least important! Some interrupts are more

 IJMIE Volume 3, Issue 4 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

113

April
2013

important than others and so need to be done before others. What about the situation where one

interrupt is currently being serviced by the CPU and another happens? Again, it depends on how

important the new interrupt is compared to the one already being done. If it is more important,

then the CPU will want to service it immediately.

 When the CPU decides to service an interrupt, it stops processing the current job, 'pushing'

the contents of its registers onto the stack. This would include, for example, the contents of the

Program Counter and the accumulator. The CPU is now free to work on another piece of software

but can return to what it was doing after the interrupt has been serviced because it has saved

where it was. It then transfers control to the interrupt handling software for that type of interrupt

using the vectored interrupt mechanism. When it has finished servicing the interrupt, the contents

of the stack are 'popped' back into the appropriate registers and the CPU continues from where it

left off before the interrupt happened.

2.3 Interrupts:

 Hardware interrupts were introduced as a way to avoid wasting the processor's valuable

time in polling loops, waiting for external events. With hardware interrupt scheme processor

utilize its waiting time for performing some other useful task and this in turn increase processors

working ability. They may be implemented in hardware as a distinct system with control lines, or

they may be integrated into the memory subsystem.

 If implemented in hardware, an interrupt controller circuit such as the IBM PC's

Programmable Interrupt Controller (PIC) may be connected between the interrupting device and

the processors interrupt pin to multiplex several sources of interrupt onto the one or two CPU

lines typically available. If implemented as part of the memory controller, interrupts are mapped

into the system's memory address space.

3. ADVANCE EXTENSIBLE BUS PROTOCOL (AXI):

 AXI is the high-performance bus in the AMBA family. The architecture defines three

write channels and two read channels. The write channels are address, write data, and response.

The read channels are address and read data. The address channels include 32-bit address buses,

AWADDR and ARADDR, but this could be extended in some implementations. The write and

read data buses (WDATA and RDATA) may be defined under the specification as any 2n

number, from 8-bit to 1024-bit. With the assumption that both the address and data buses are 32-

bit, and that the data buses are 128-bit, the write address, write data, and write response channels

http://en.wikipedia.org/wiki/Polling_%28computer_science%29
http://en.wikipedia.org/wiki/Programmable_Interrupt_Controller
http://en.wikipedia.org/wiki/Memory_controller
http://en.wikipedia.org/wiki/Address_space

 IJMIE Volume 3, Issue 4 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

114

April
2013

would require 56, 139, and 8 I/O, respectively. The read address and read data channels would

require 56 and 137 I/O, respectively. Thus, each 128-bit AXI master has 396 I/O total. AXI

masters and slaves are connected together through a central interconnect, which routes master

requests and write data to the proper slave, and returning read data to the Requesting master. The

interconnect also maintains ordering based on tags if, for example, a single master pipelines read

requests to different slaves.

 AXI uses a handshake between VALID and READY signals. VALID is driven by the

source, and READY is driven by the destination. Transfer of information, either address and

control or data, occurs when both VALID and READY are sampled high.

 An AXI master begins a read transfer by driving an address, ARADDR, and other transfer

qualifiers with ARVALID. In high frequency implementations, the interconnect latches and

drives the same signals to the slave, which responds with ARREADY. The slave drives read data,

RDATA, with RVALID, and the transfer is made when RVALID and RREADY are sampled

active.

 Again, in high frequency implementations, it is common for the interconnect to latch and

drive the read data back to the requesting master. The last beat of read data is driven with

RLAST.

 For a write transfer, the AXI master begins by driving an address, AWADDR, and other

transfer qualifiers with AWVALID. An interconnect latches and drives the same signals to the

slave in high frequency implementations, and the slave responds with AWREADY. When

WVALID is active, the first beat of write data is valid. WVALID may be driven with valid data

even before or after the address that relates to it. The transfer is made when WVALID and

WREADY are sampled active. The AXI master drives the last beat of write data with WLAST.

The slave then drives a write response, BRESP, with BVALID back to the master to indicate

when the write transfer is complete, along with any applicable error information.

 Another family of buses that the Power.org Bus Architectures TSC decided to investigate

is the ARM AMBA (Advanced Microcontroller Bus Architecture) set of buses: APB, AHB and

AXI. The APB (Advanced Peripheral Bus) is considered a low-performance, peripheral level bus.

The AHB (Advanced High-performance Bus) is considered (despite the bus name) a mid-

performance bus and the AXI (Advanced extensible Interface) bus is considered a high-

 IJMIE Volume 3, Issue 4 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

115

April
2013

performance bus. The AMBA family of buses was chosen for consideration because of their

widespread acceptance in the industry and large amount of existing IP cores.

 We note in passing that the APB bus is not always used as a standalone bus. Some AMBA

based IP cores will use a higher performing bus like AHB or AXI for the primary function, but

use an APB port for access to configuration registers. This gets configuration accesses off of the

main bus which can be reserved for higher bandwidth operations. OPB is never used in this way

because Core Connect provides an additional bus called DCR whose purpose is to offload

configuration accesses. All of the APB IP cores discussed here are standalone devices so that this

report will be an apples to apples comparison of the two buses.

3.1 OCP-IP Protocol: The Bus Architectures TSC also investigated the Open Core Protocol

(OCP), due to its openness, its definition being driven by participation from its members, its wide

range of supported bus features, and its acceptance within several large companies that design

their own IP. OCP-IP spans all three levels of performance hierarchy using one architecture

specification, but low, mid, and high performance IP are still tailored to suit their individual

performance requirements. OCP-IP has been defined since 2001, and has gained acceptance in

markets such as consumer electronics and gaming.

Figure: 3.1 performance evaluation

 The AMBA, Core Connect, and OCP buses evaluated are shown below in Figure 1. Note that

the features and functions of each bus are usually not neatly contained within one performance

level. There is often enough flexibility within the architecture that allows implementations to span

across performance levels. Note that the upper half of the high performance level is reserved for

 IJMIE Volume 3, Issue 4 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

116

April
2013

buses that support hardware-enforced cache coherency, and that only one of the buses evaluated,

PLB6 will support this feature.

 3.2 APB Description:

 The APB Bus is the lowest performance bus in the AMBA family. There are separate

address (PADDR), write data (PWDATA), and read data (PRDATA) buses, up to 32-bits each.

With 7 additional control signals, there can be up to 103 I/O for each APB slave.

 There is one APB master, usually the bridge from a higher performance bus that begins a

transfer by asserting the appropriate PSELn signal with PADDR. PWRITE is active for a write

and inactive on a read. PENABLE is asserted in the second clock, and is held active until

PREADY is returned by the slave. The minimum transfer, read or write is two clocks. APB slaves

also have the option of inserting wait states for reads or writes by withholding PREADY. There is

an optional PSLVERR signal used by the slave to report an error on a read or write with

PREADY.

 Assuming a frequency of 133MHz, (which should be achievable in a 90nm or smaller

process) and the maximum data bus widths of 32-bits, the overall APB bandwidth could be as

high as 267MB/s, but that assumes that none of the APB slaves would insert any wait states. Also,

the total APB bandwidth must be shared between all of the APB slaves.

4. Architecture of Interrupt controller:

Fig 4.1 Interrupt controller

 IJMIE Volume 3, Issue 4 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

117

April
2013

5. AXI based Embedded System:

Figure 5.1 AXI based Embedded system

6. DESIGN AND ANALAYSIS:

6.1 Hierarchy of Paper:

Fig6.1 Hierarchy of Paper

 Initial all the interrupts are captured and they sorted according to piority and the given to

the processor as per cnfiguerd by the interrupt controller register. Usaually processor and

pheripherlas in the register communicate with each other through an interrupt and they connected

with high performance bus protocol to incerase the performance of the interrupt controller.And

this the hierachy of the project to acesses the interrupt controller and processor.

6.2 Implementation AXI Bus:

 IJMIE Volume 3, Issue 4 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

118

April
2013

 To implement the axi bus we should develop by using finite state machine.The state machine

gives the operation if the axi and its working .it is linked between the processor and interrupt

controller and it is high performance bus protocol and it had different signals to flow of the data .

 Initialy it is ideal state.

 Next state write valid to write the data by the processor.

 If the write valid is logic 1 than processor writing operation is done.

 Write address the processor write the address to operate the corressponding data to

acesses.

 If address write valid logic 1 and write valid logic 0 when these both signals having logics

than corrressponding values then writing address is done.

 If address write valid logic 1and write valid logic 1 when these both signals having logics

corressponding values then done.

 After writing than it send response signal after getting response signal again it reaches to

ideal state.

Thus in this way we implement the axi by writing the verilog code to acesses between the

processor and interrupt controller.

Fig6.2 Finite state machine for AXI

6.4 Flow Chart:

 IJMIE Volume 3, Issue 4 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

119

April
2013

7. SIMULATION RESULTS:

7.1 Simulation Report:

 IJMIE Volume 3, Issue 4 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

120

April
2013

7.2 Power report:

7.3 Design Summary:

 IJMIE Volume 3, Issue 4 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

121

April
2013

7.4 Synthesis Report:

Release 9.2i - xst J.36

Copyright (c) 1995-2007 Xilinx, Inc. All rights reserved.

--> Parameter TMPDIR set to ./xst/projnav.tmp

CPU : 0.00 / 0.16 s | Elapsed : 0.00 / 1.00 s

--> Parameter xsthdpdir set to ./xst

CPU : 0.00 / 0.16 s | Elapsed : 0.00 / 1.00 s

--> Reading design: intc_top.prj

TABLE OF CONTENTS

 1) Synthesis Options Summary

 2) HDL Compilation

 3) Design Hierarchy Analysis

 4) HDL Analysis

 5) HDL Synthesis

 5.1) HDL Synthesis Report

 6) Advanced HDL Synthesis

 6.1) Advanced HDL Synthesis Report

 7) Low Level Synthesis

 8) Partition Report

 IJMIE Volume 3, Issue 4 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

122

April
2013

 9) Final Report

 9.1) Device utilization summary

 9.2) Partition Resource Summary

 9.3) TIMING REPORT

********* Synthesis Options Summary**********

---- Source Parameters

Input File Name : "intc_top.prj"

Input Format : mixed

Ignore Synthesis Constraint File : NO

---- Target Parameters

Output File Name : "intc_top"

Output Format : NGC

Target Device : xc3s1600e-4-fg320

---- Source Options

Top Module Name : intc_top

Automatic FSM Extraction : YES

FSM Encoding Algorithm : Auto

Safe Implementation : No

FSM Style : lut

RAM Extraction : Yes

RAM Style : Auto

ROM Extraction : Yes

Mux Style : Auto

Decoder Extraction : YES

Priority Encoder Extraction : YES

Shift Register Extraction : YES

Logical Shifter Extraction : YES

XOR Collapsing : YES

ROM Style : Auto

Mux Extraction : YES

 IJMIE Volume 3, Issue 4 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

123

April
2013

Resource Sharing : YES

Asynchronous To Synchronous : NO

Multiplier Style : auto

Automatic Register Balancing : No

---- Target Options

Add IO Buffers : YES

Global Maximum Fanout : 500

Add Generic Clock Buffer(BUFG) : 24

Register Duplication : YES

Slice Packing : YES

Optimize Instantiated Primitives : NO

Use Clock Enable : Yes

Use Synchronous Set : Yes

Use Synchronous Reset : Yes

Pack IO Registers into IOBs : auto

Equivalent register Removal : YES

---- General Options

Optimization Goal : Speed

Optimization Effort : 1

Library Search Order : intc_top.lso

Keep Hierarchy : NO

RTL Output : Yes

Global Optimization : AllClockNets

Read Cores : YES

Write Timing Constraints : NO

Cross Clock Analysis : NO

Hierarchy Separator : /

Bus Delimiter : <>

Case Specifier : maintain

Slice Utilization Ratio : 100

BRAM Utilization Ratio : 100

 IJMIE Volume 3, Issue 4 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

124

April
2013

Verilog 2001 : YES

Auto BRAM Packing : NO

Slice Utilization Ratio Delta : 5

*********HDL Compilation **********

WARNING:HDLCompilers:176 - Include directory \New folder (2)\new modified code\ does not

exist

Compiling verilog file "F:/New folder (2)/new modified code/axi_top.v" in library work

Compiling verilog file "F:/New folder (2)/new modified code/intc_top.v" in library work

Module <axi_top> compiled

Module <intc_top> compiled

=============================

* Design Hierarchy Analysis *

=============================

ERROR:HDLCompilers:87 - "F:/New folder (2)/new modified code/intc_top.v" line 60 Could not

find module/primitive 'final_top'

-->

Total memory usage is 152100 kilobytes

Number of errors : 1 (0 filtered)

Number of warnings : 7 (0 filtered)

Number of infos : 0 (0 filtered)

8. Conclusion:

 In this paper, an interrupt-combinable and priority configurable multichannel interrupt

controller is proposed. AXI bus interface is used for communication with processor in this

interrupt controller. The interrupt controller supports 60 interrupt inputs and has 12 interrupt

channels for interrupt requests. Input interrupts are split into 4 groups; a combination interrupt is

generated with each group. In this case, the interrupt controller has 64 interrupt sources. Priority

of interrupts is configurable. Any of the 64 interrupt sources can be mapped to any interrupt

channel, which makes this interrupt controller more flexible. The synthesis time delay in SMIC

O.13um CMOS technology is 1.43ns and the total power is 8.44mW at the switching rate of

100%.

 IJMIE Volume 3, Issue 4 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

125

April
2013

9. Future Scope:

 Can connect more than 60 interrupts

 Can use a different processor Interface other than AXI (next generation bus protocol)

 We can reduce the power consumption.

 We can implement in any embedded systems for real time applications.

 Configurable and combination can be done for large number of interrupt inputs

 We can also increase the number of peripherals on single system on chip by using

interrupt controller as multichannel.

10. BIBLIOGRAPHY:

[1] W.A. Halang, M. Wannemacher, C.E. Pereira, "A high-precision timing and interrupt

controller to support distributed real-time operating systems ," Circuits and Systems, 1995, pp 9-

12.

[2] A. de Gloria, P. Faraboschi, M. Olivieri, "A self timed interrupt controller: a case study in

asynchronous micro-architecture design," ASIC Conference and Exhibit, 1994, pp 296-299.

[3] A. Tumeo, M. Branca, L. Camerini, M. Monchiero, G. Palermo, F. Ferrandi, D. Sciuto, "An

Interrupt Controller for FPGA-based Multiprocessors," Embedded Computer Systems:

Architectures, Modeling and Simulation, 2007, pp 82-87.

[4] D. Hristu-Varsakelis, P.R. Kumar, "Interrupt-based feedback control over a shared

communication medium," Decision and Control, 2002, pp 3223- 3228.

[5] C. Panis, J. Hohl, H. Gruenbacher, J. Nurmi, ''xICU - in interrupt control unit for a

configurable DSP core ," System-on-Chip, 2003, pp 75-78.

[6] Qiurong Wang, "An Interrupt Management Scheme Based on Application in Embedded

System ," MultiMedia and Information Technology, 2008, pp 449-452.

