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ABSTRACT:  

Whenever we make a single change to the original program we get First Order Mutant (FOM). 

When we apply another single change to FOM we get Second Order Mutant (SOM).On applying 

another single change to SOM we get Third Order Mutant (TOM).Mutants other than FOM are 

called Higher Order Mutant (HOM).In this paper we prove that as we move from FOM to SOM 

to TOM there will not be any test data that will kill the Original Program resulting to the 

formation of equivalent mutants. Equivalent Mutants are never killed hence they will never 

detect any fault and thus they are considered useless. 

 

Keywords: First Order Mutant (FOM), Second Order Mutant (SOM), Third Order Mutant 

(TOM), Higher Order Mutant (HOM). 

 

1) INTRODUCTION: 

Mutation testing (or Mutation analysis) is a method of software testing, which involves 

modifying program's source code in small ways. These, so-called mutations, are based on well-

defined mutation operators that either mimic typical programming errors (such as using the 

wrong operator or variable name) or force the creation of valuable tests (such as driving each 

expression to zero). The purpose is to help the tester develop effective tests or locate weaknesses 

in the test data used for the program or in sections of the code that are seldom or never accessed 

during execution. 

Mutation testing is done by selecting a set of mutation operators and then applying them to the 

source program one at a time for each applicable piece of the source code. The result of applying 

one mutation operator to the program is called a mutant. If the test suite is able to detect the 

change (i.e. one of the tests fails), then the mutant is said to be killed. 

For example, consider the following C++ code fragment: 

if (a && b) 

    c = 1; 

else 
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    c = 0; 

The condition mutation operator would replace '&&' with '||' and produce the following mutant: 

if (a || b) 

    c = 1; 

else 

    c = 0; 

Now, for the test to kill this mutant, the following condition should be met: 

 Test input data should cause different program states for the mutant and the original 

program. For example, a test with a=1 and b=0 would do this.  

 The value of 'c' should be propagated to the program's output and checked by the test.  

Generally, in the mutation testing, a fault is introduced by a small modification of a correct 

program code. The modified program is called mutant, and this process is called mutation. A 

transformation rule that generates a mutant from the original program is known as a mutation 

operator. If the mutant and the original program generate different outputs for a test case then the 

mutant is called killed mutant. The mutant is called alive, if no test case can distinguish 

between the mutant and the original program. If the mutant survives, then the test data is 

considered insufficient to explore the fault. In that case, the test data is extended until such a 

mutant is killed. Sometime, it is not possible to find a test case that distinguishes between the 

output of the mutant and that of the original program in which case the mutant is called 

equivalent mutant [10]. 

Mutation testing performs “change and check” testing strategy.  Original program is slightly 

modified and then executed.  The output of original program and that modified program with 

respect to the same input set are then compared.  For example - we have a program P and slightly 

modified (mutated) program P‟ and Let I be the input set.  With execution of same input set I, 

program P gives output O and program P‟ give output O‟.  

I→P→→O                                       

I → P „→ → O‟ 
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If   (O‟ ≠ O)   then it means, our test case is adequate and the functionality of the program is 

good. 

Otherwise, if (O‟ = O), then our test case is inadequate and the functionality of the program is 

poor. 

Consider the example for mutant generation given in [12]. 

Example: Consider the program P = 

if (c==a+b) 

doThis(); 

else doThat(); 

 

Some of the possible mutants of P would be 

 

P1: if (c==a-b) 

doThis(); 

else doThat(); 

 

P2: if (c==a*b) 

doThis(); 

else doThat(); 

 

P3: if (c==a/b) 

doThis(); 

else doThat(); 

 

P4: if (c>a+b) 



             IJMIE                 Volume 1, Issue 7                 ISSN: 2249-0558  
__________________________________________________________         

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories 
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A. 

International Journal of Management, IT and Engineering 
 http://www.ijmra.us                                             

 
319 

December 
2011 

doThis(); 

else doThat(); 

P5: if (c<a+b) 

doThis(); 

else doThat(); 

If the value of a=2 and b=2 then P2 is an equivalent mutant of P because it is not possible to find 

a test case that can ever kill this mutant.  

Mutation testing is typically computationally expensive because a program may have a large 

number of faults, and there may be a large number of mutants for even a small software unit. 

Therefore, we need to generate test case in such a way that the test data make the execution of 

the program to reach each mutated statement [7]. 

Weak mutation testing (or weak mutation coverage) requires that only the first condition is 

satisfied. Strong mutation testing requires that both conditions are satisfied. Strong mutation is 

more powerful, since it ensures that the test suite can really catch the problems. Weak mutation 

is closely related to code coverage methods. It requires much less computing power to ensure 

that the test suite satisfies weak mutation testing than strong mutation testing. 

 

2)  EQUIVALENT MUTANTS: 

Many mutation operators can produce equivalent mutants. For example, consider the following 

code fragment: 

int index=0; 

while (...) 

{ 

    . . . ;  

    index++; 

    if (index==10) 
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        break; 

} 

Boolean relation mutation operator will replace "==" with ">=" and produce the following 

mutant: 

int index=0; 

while (...) 

{ 

    . . .;  

    index++; 

    if (index>=10) 

        break; 

} 

However, it is not possible to find a test case which could kill this mutant. The resulting program 

is equivalent to the original one. Such mutants are called equivalent mutants. 

Equivalent mutants detection is one of biggest obstacles for practical usage of mutation testing. 

The effort, needed to check if mutants are equivalent or not, can be very high even for small 

programs. 

 

3)  MUTATION OPERATORS: 

 A variety of mutation operators were explored by researchers. Here are some examples of 

mutation operators for imperative languages: 

 Statement deletion.  

 Replace each boolean subexpression with true and false.  

 Replace each arithmetic operation with another one, e.g. + with *, - and /.  

 Replace each boolean relation with another one, e.g. > with >=, == and <=.  
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 Replace each variable with another variable declared in the same scope (variable types 

should be the same).  

These mutation operators are also called traditional mutation operators. Beside this, there are 

mutation operators for object-oriented languages, for concurrent constructions, complex objects 

like containers etc. They are called class-level mutation operators. For example the MuJava tool 

offers various class-level mutation operators such as: Access Modifier Change, Type Cast 

Operator Insertion, and Type Cast Operator Deletion. 

Typically for testing, only first order mutants are considered. If we apply a mutation operator to a 

mutant, we generate a mutant of a mutant. This is called a second order mutant. If we mutate a 

second order mutant, we obtain a third order mutant and so on. These “higher order” (i.e. higher 

than first order) mutants are not normally considered in Mutation Testing. 

Using only first-order mutants has been justified in two ways. Firstly, it is argued that if our test 

finds the small differences defined by first-order mutants, then it is likely that it will find larger 

differences defined by higher-order mutants: this is called the coupling effect. Secondly, it is also 

argued that real programmers make small mistakes and thus that real programs are like first-

order mutants of correct programs: this is called the competent programmer hypothesis.  

The reason for only using first-order mutants is also pragmatic: if we do not restrict ourselves to 

first-order mutants, then the total number of mutants is likely to be extremely large. In fact, even 

when we only produce first-order mutants, mutation testing tools produce large numbers of 

mutants for even small pieces of code. This is one of the reasons why mutation testing currently 

does not scale up beyond unit testing. 

A test case t kills the mutant p‟ of p if p and p‟ produce different output when given the input 

from t. A mutant p‟ of p is an equivalent mutant if no test input kills p‟. An equivalent mutant p‟ 

of p is syntactically different from p (the code is different) but semantically equivalent (p and p‟ 

define the same input/output function).In mutation testing, system produce some set of mutants 

and a test set is said to be adequate if it kills all of the non-equivalent mutants. The mutation 

coverage measurement is the percentage of the non-equivalent mutants produced that are killed 

by the test set. The aim is to produce a test set that achieves 100% coverage. 
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4)   PROPOSED WORK: 

To demonstrate that Higher Order Mutation Testing leads to equivalent mutants we take the 

example for swapping of two numbers in C language. 

Original_Program 

#include<stdio.h> 

#include<conio.h> 

void main() 

{ 

int temp , x,y; 

clrscr(); 

printf(“Enter the numbers to be swapped”); 

scanf(“%d%d”,&x,&y); 

temp=x; 

x=y; 

y=temp; 

printf(“The numbers after swapping are%d%d”,x,y); 

} 

In the above program if value of x=5,y=10 than after swapping x will be equal to 10 and y will 

be equal to 5. Now we introduce a single change(changed variable x to y) in the 

Original_Program which is shown in Bold below and call it FOM(First Order Mutant) 

FOM 

1) temp=y; 

2) x=y; 

3) y=temp; 
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Change is made at line1. If value of x=5, y=10 FOM will give the output as x=10, y=10. 

Since this output is different from  Original_Program we say that FOM is killed. 

 

Now we introduce a single change to the FOM which is shown in Bold below and call it SOM 

(Second Order Mutant) 

SOM 

1) temp=y; 

2) y=x; 

3) y=temp; 

 

Change is made at line2. If value of x=5, y=10 SOM will give the output as x=5, y=10. 

Since this output is different from Original_Program we say that SOM is killed. 

 

Now we introduce a single change to the SOM which is shown in Bold below and call it TOM 

(Third Order Mutant) 

TOM 

1) temp=y; 

2) y=x; 

3) x=temp; 

 

Change is made at line3. If value of x=5, y=10 TOM will give the output as x=10, y=5. 

Since this output is same as Original_Program we say that TOM is alive. Since there is 

no test case that can kill TOM we say that this produces Equivalent Mutants. Higher in 

the order we went, we got equivalent mutants. 
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We depict the results of mutants in the table below. 

 

MUTANT DATA & RESULT STATUS 

X=5 Y=10 

Original 

Program 

10 5 ---- 

FOM 10 10 KILLED 

SOM 5 10 KILLED 

TOM 10 5 ALIVE 

 

The result is shown in graph below: 

 

 

 

 

5) CONCLUSION: 

The paper concludes that Lower Order Mutation Testing (LOM) is more powerful in finding 

faults. As we move to Higher Order Mutation Testing –Third Order Mutants and higher, 

Equivalent Mutants are obtained which have very high survival rate and hence turn out useless 

for finding faults. 
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