

International Journal of Management, IT & Engineering

(ISSN: 2249-0558)

CONTENTS
Sr.

No.
TITLE & NAME OF THE AUTHOR (S) Page

No.

1
Community Participation In Water Supply Schemes In Oke-Ogun Zone, Oyo State, NIGERIA.

Toyobo Adigun Emmanuel, Tanimowo N. Bolanle and Muili A.B
1-14

2
The current situation, future prospect of Poverty and inequality in Sudan.

Dr. Ali Musa Abaker and Dr. Ali Abd Elaziz Salih
15-31

3
Performance Evaluation of On-demand AODV and DSR Routing Protocols in Mobile Ad-hoc Network.

Muhammad Ashraf, Ahsan Raza Sattar, Tasleem Mustafa, Muhammad Inam Shahzad and Ahmad Adnan
32-57

4
Enhancement of Security for Initial Network Entry of SS In IEEE 802.16e.

Ahmad Adnan, Fahad Jan, Ahsan Raza Sattar, Muhammad Ashraf and Inaam Shehzad
58-72

5
The Role Social Capital Components on Entrepreneurship of Parsabad SMEs.

Gholamreza Rahimi (Phd) and Ghader Vazifeh Damirch (MA)
73-97

6
Factors of default in Small and Medium Enterprise: an Application of Cluster Analysis.

Subroto Chowdhury
98-125

7
Implementing Construction Projects on Schedule – A Real Challenge.

Prof (Dr.) Debabrata Kar
126-142

8
A Study On Employee Stress Management In Selected Private Banks In Salem.

Ms. A. Sharmila and Ms. J. Poornima
143-161

9
Elliptic Curve Cryptography With Secure Text Based Cryptosystem.

Anju Gera, Dr. Ashutosh Dixit and Sonia Saini
162-176

10
Handling Of Synchronized Data Using JAVA/J2EE.

Ankur Saxena
177-194

11
Forensic Tools Matrix: The Process of Computer Forensic for Digital Evidence Collection.

Dr. Jigar Patel
195-209

12
Corporate Merger & Acquisition: A Strategic approach in Indian Banking Sector.

Madhuri Gupta and Kavita Aggarwal
210-235

13
Loss Reduction in Radial Distribution Systems Using Plant Growth Simulation Algorithm.

V. Raj kumar, B. Venkata Ramana and T.Ramesh Babu
236-254

14
Off Page Optimization Factors For Page Rank and Link Popularity.

Dr. Yogesh Yadav
255-268

15
A Node Disjoint Multipath Routing Protocol in Mobile Ad Hoc Network.

R.K. Kapoor, M.A. Rizvi, Sanjay Sharma and M.M. Malik
269-285

16
VLSI Implementation Of Systolic Array For Discrete Waveelet Transform.

Prof. Sonali R.Tavlare and Prof. P. R. Deshmukh
286-309

17
HIGHER ORDER MUTATION TESTING (RESULT- EQUIVALENT MUTANTS).

Shalini Kapoor and Rajat Kapoor
310-327

 IJMIE Volume 1, Issue 7 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
 http://www.ijmra.us

311

December
2011

Chief Patron
Dr. JOSE G. VARGAS-HERNANDEZ

Member of the National System of Researchers, Mexico

Research professor at University Center of Economic and Managerial Sciences,

University of Guadalajara

Director of Mass Media at Ayuntamiento de Cd. Guzman

Ex. director of Centro de Capacitacion y Adiestramiento

Patron
Dr. Mohammad Reza Noruzi

PhD: Public Administration, Public Sector Policy Making Management,

Tarbiat Modarres University, Tehran, Iran

Faculty of Economics and Management, Tarbiat Modarres University, Tehran, Iran

Young Researchers' Club Member, Islamic Azad University, Bonab, Iran

Chief Advisors
Dr. NAGENDRA. S.
Senior Asst. Professor,

Department of MBA, Mangalore Institute of Technology and Engineering, Moodabidri

Dr. SUNIL KUMAR MISHRA
Associate Professor,

Dronacharya College of Engineering, Gurgaon, INDIA

Mr. GARRY TAN WEI HAN
Lecturer and Chairperson (Centre for Business and Management),

Department of Marketing, University Tunku Abdul Rahman, MALAYSIA

MS. R. KAVITHA

Assistant Professor,

Aloysius Institute of Management and Information, Mangalore, INDIA

 Dr. A. JUSTIN DIRAVIAM

Assistant Professor,

Dept. of Computer Science and Engineering, Sardar Raja College of Engineering,

Alangulam Tirunelveli, TAMIL NADU, INDIA

 IJMIE Volume 1, Issue 7 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
 http://www.ijmra.us

312

December
2011

Editorial Board

Dr. CRAIG E. REESE
Professor, School of Business, St. Thomas University, Miami Gardens

Dr. S. N. TAKALIKAR
Principal, St. Johns Institute of Engineering, PALGHAR (M.S.)

Dr. RAMPRATAP SINGH
Professor, Bangalore Institute of International Management, KARNATAKA

Dr. P. MALYADRI
Principal, Government Degree College, Osmania University, TANDUR

Dr. Y. LOKESWARA CHOUDARY
Asst. Professor Cum, SRM B-School, SRM University, CHENNAI

Prof. Dr. TEKI SURAYYA
Professor, Adikavi Nannaya University, ANDHRA PRADESH, INDIA

Dr. T. DULABABU
Principal, The Oxford College of Business Management, BANGALORE

Dr. A. ARUL LAWRENCE SELVAKUMAR
Professor, Adhiparasakthi Engineering College, MELMARAVATHUR, TN

Dr. S. D. SURYAWANSHI

Lecturer, College of Engineering Pune, SHIVAJINAGAR

Dr. S. KALIYAMOORTHY
Professor & Director, Alagappa Institute of Management, KARAIKUDI

Prof S. R. BADRINARAYAN

Sinhgad Institute for Management & Computer Applications, PUNE

Mr. GURSEL ILIPINAR
ESADE Business School, Department of Marketing, SPAIN

Mr. ZEESHAN AHMED
Software Research Eng, Department of Bioinformatics, GERMANY

 IJMIE Volume 1, Issue 7 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
 http://www.ijmra.us

313

December
2011

Mr. SANJAY ASATI
Dept of ME, M. Patel Institute of Engg. & Tech., GONDIA(M.S.)

Mr. G. Y. KUDALE
N.M.D. College of Management and Research, GONDIA(M.S.)

Editorial Advisory Board

Dr. MANJIT DAS
Assistant Professor, Deptt. of Economics, M.C.College, ASSAM

Dr. ROLI PRADHAN
Maulana Azad National Institute of Technology, BHOPAL

Dr. N. KAVITHA
Assistant Professor, Department of Management, Mekelle University, ETHIOPIA

Prof C. M. MARAN
Assistant Professor (Senior), VIT Business School, TAMIL NADU

Dr. RAJIV KHOSLA
Associate Professor and Head, Chandigarh Business School, MOHALI

Dr. S. K. SINGH
Asst. Professor, R. D. Foundation Group of Institutions, MODINAGAR

Dr. (Mrs.) MANISHA N. PALIWAL
Associate Professor, Sinhgad Institute of Management, PUNE

Dr. (Mrs.) ARCHANA ARJUN GHATULE
Director, SPSPM, SKN Sinhgad Business School, MAHARASHTRA

Dr. NEELAM RANI DHANDA
Associate Professor, Department of Commerce, kuk, HARYANA

Dr. FARAH NAAZ GAURI
Associate Professor, Department of Commerce, Dr. Babasaheb Ambedkar Marathwada

University, AURANGABAD

 IJMIE Volume 1, Issue 7 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
 http://www.ijmra.us

314

December
2011

Prof. Dr. BADAR ALAM IQBAL
Associate Professor, Department of Commerce, Aligarh Muslim University, UP

Dr. CH. JAYASANKARAPRASAD
Assistant Professor, Dept. of Business Management, Krishna University, A. P., INDIA

Technical Advisors
Mr. Vishal Verma

Lecturer, Department of Computer Science, Ambala, INDIA

Mr. Ankit Jain
Department of Chemical Engineering, NIT Karnataka, Mangalore, INDIA

Associate Editors
Dr. SANJAY J. BHAYANI

Associate Professor ,Department of Business Management, RAJKOT, INDIA

MOID UDDIN AHMAD
Assistant Professor, Jaipuria Institute of Management, NOIDA

Dr. SUNEEL ARORA
Assistant Professor, G D Goenka World Institute, Lancaster University, NEW DELHI

Mr. P. PRABHU
Assistant Professor, Alagappa University, KARAIKUDI

Mr. MANISH KUMAR
Assistant Professor, DBIT, Deptt. Of MBA, DEHRADUN

Mrs. BABITA VERMA
Assistant Professor, Bhilai Institute Of Technology, DURG

Ms. MONIKA BHATNAGAR
Assistant Professor, Technocrat Institute of Technology, BHOPAL

Ms. SUPRIYA RAHEJA
Assistant Professor, CSE Department of ITM University, GURGAON

 IJMIE Volume 1, Issue 7 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
 http://www.ijmra.us

315

December
2011

HIGHER ORDER MUTATION TESTING

(RESULT- EQUIVALENT MUTANTS)

Shalini Kapoor

CSE Deptt, GNI, Mullana

Haryana

Rajat Kapoor

Assistant Manager Finance, Accenture,

Noida

Title

Author(s)

 IJMIE Volume 1, Issue 7 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
 http://www.ijmra.us

316

December
2011

ABSTRACT:

Whenever we make a single change to the original program we get First Order Mutant (FOM).

When we apply another single change to FOM we get Second Order Mutant (SOM).On applying

another single change to SOM we get Third Order Mutant (TOM).Mutants other than FOM are

called Higher Order Mutant (HOM).In this paper we prove that as we move from FOM to SOM

to TOM there will not be any test data that will kill the Original Program resulting to the

formation of equivalent mutants. Equivalent Mutants are never killed hence they will never

detect any fault and thus they are considered useless.

Keywords: First Order Mutant (FOM), Second Order Mutant (SOM), Third Order Mutant

(TOM), Higher Order Mutant (HOM).

1) INTRODUCTION:

Mutation testing (or Mutation analysis) is a method of software testing, which involves

modifying program's source code in small ways. These, so-called mutations, are based on well-

defined mutation operators that either mimic typical programming errors (such as using the

wrong operator or variable name) or force the creation of valuable tests (such as driving each

expression to zero). The purpose is to help the tester develop effective tests or locate weaknesses

in the test data used for the program or in sections of the code that are seldom or never accessed

during execution.

Mutation testing is done by selecting a set of mutation operators and then applying them to the

source program one at a time for each applicable piece of the source code. The result of applying

one mutation operator to the program is called a mutant. If the test suite is able to detect the

change (i.e. one of the tests fails), then the mutant is said to be killed.

For example, consider the following C++ code fragment:

if (a && b)

 c = 1;

else

 IJMIE Volume 1, Issue 7 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
 http://www.ijmra.us

317

December
2011

 c = 0;

The condition mutation operator would replace '&&' with '||' and produce the following mutant:

if (a || b)

 c = 1;

else

 c = 0;

Now, for the test to kill this mutant, the following condition should be met:

 Test input data should cause different program states for the mutant and the original

program. For example, a test with a=1 and b=0 would do this.

 The value of 'c' should be propagated to the program's output and checked by the test.

Generally, in the mutation testing, a fault is introduced by a small modification of a correct

program code. The modified program is called mutant, and this process is called mutation. A

transformation rule that generates a mutant from the original program is known as a mutation

operator. If the mutant and the original program generate different outputs for a test case then the

mutant is called killed mutant. The mutant is called alive, if no test case can distinguish

between the mutant and the original program. If the mutant survives, then the test data is

considered insufficient to explore the fault. In that case, the test data is extended until such a

mutant is killed. Sometime, it is not possible to find a test case that distinguishes between the

output of the mutant and that of the original program in which case the mutant is called

equivalent mutant [10].

Mutation testing performs “change and check” testing strategy. Original program is slightly

modified and then executed. The output of original program and that modified program with

respect to the same input set are then compared. For example - we have a program P and slightly

modified (mutated) program P‟ and Let I be the input set. With execution of same input set I,

program P gives output O and program P‟ give output O‟.

I→P→→O

I → P „→ → O‟

 IJMIE Volume 1, Issue 7 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
 http://www.ijmra.us

318

December
2011

If (O‟ ≠ O) then it means, our test case is adequate and the functionality of the program is

good.

Otherwise, if (O‟ = O), then our test case is inadequate and the functionality of the program is

poor.

Consider the example for mutant generation given in [12].

Example: Consider the program P =

if (c==a+b)

doThis();

else doThat();

Some of the possible mutants of P would be

P1: if (c==a-b)

doThis();

else doThat();

P2: if (c==a*b)

doThis();

else doThat();

P3: if (c==a/b)

doThis();

else doThat();

P4: if (c>a+b)

 IJMIE Volume 1, Issue 7 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
 http://www.ijmra.us

319

December
2011

doThis();

else doThat();

P5: if (c<a+b)

doThis();

else doThat();

If the value of a=2 and b=2 then P2 is an equivalent mutant of P because it is not possible to find

a test case that can ever kill this mutant.

Mutation testing is typically computationally expensive because a program may have a large

number of faults, and there may be a large number of mutants for even a small software unit.

Therefore, we need to generate test case in such a way that the test data make the execution of

the program to reach each mutated statement [7].

Weak mutation testing (or weak mutation coverage) requires that only the first condition is

satisfied. Strong mutation testing requires that both conditions are satisfied. Strong mutation is

more powerful, since it ensures that the test suite can really catch the problems. Weak mutation

is closely related to code coverage methods. It requires much less computing power to ensure

that the test suite satisfies weak mutation testing than strong mutation testing.

2) EQUIVALENT MUTANTS:

Many mutation operators can produce equivalent mutants. For example, consider the following

code fragment:

int index=0;

while (...)

{

 . . . ;

 index++;

 if (index==10)

 IJMIE Volume 1, Issue 7 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
 http://www.ijmra.us

320

December
2011

 break;

}

Boolean relation mutation operator will replace "==" with ">=" and produce the following

mutant:

int index=0;

while (...)

{

 . . .;

 index++;

 if (index>=10)

 break;

}

However, it is not possible to find a test case which could kill this mutant. The resulting program

is equivalent to the original one. Such mutants are called equivalent mutants.

Equivalent mutants detection is one of biggest obstacles for practical usage of mutation testing.

The effort, needed to check if mutants are equivalent or not, can be very high even for small

programs.

3) MUTATION OPERATORS:

 A variety of mutation operators were explored by researchers. Here are some examples of

mutation operators for imperative languages:

 Statement deletion.

 Replace each boolean subexpression with true and false.

 Replace each arithmetic operation with another one, e.g. + with *, - and /.

 Replace each boolean relation with another one, e.g. > with >=, == and <=.

 IJMIE Volume 1, Issue 7 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
 http://www.ijmra.us

321

December
2011

 Replace each variable with another variable declared in the same scope (variable types

should be the same).

These mutation operators are also called traditional mutation operators. Beside this, there are

mutation operators for object-oriented languages, for concurrent constructions, complex objects

like containers etc. They are called class-level mutation operators. For example the MuJava tool

offers various class-level mutation operators such as: Access Modifier Change, Type Cast

Operator Insertion, and Type Cast Operator Deletion.

Typically for testing, only first order mutants are considered. If we apply a mutation operator to a

mutant, we generate a mutant of a mutant. This is called a second order mutant. If we mutate a

second order mutant, we obtain a third order mutant and so on. These “higher order” (i.e. higher

than first order) mutants are not normally considered in Mutation Testing.

Using only first-order mutants has been justified in two ways. Firstly, it is argued that if our test

finds the small differences defined by first-order mutants, then it is likely that it will find larger

differences defined by higher-order mutants: this is called the coupling effect. Secondly, it is also

argued that real programmers make small mistakes and thus that real programs are like first-

order mutants of correct programs: this is called the competent programmer hypothesis.

The reason for only using first-order mutants is also pragmatic: if we do not restrict ourselves to

first-order mutants, then the total number of mutants is likely to be extremely large. In fact, even

when we only produce first-order mutants, mutation testing tools produce large numbers of

mutants for even small pieces of code. This is one of the reasons why mutation testing currently

does not scale up beyond unit testing.

A test case t kills the mutant p‟ of p if p and p‟ produce different output when given the input

from t. A mutant p‟ of p is an equivalent mutant if no test input kills p‟. An equivalent mutant p‟

of p is syntactically different from p (the code is different) but semantically equivalent (p and p‟

define the same input/output function).In mutation testing, system produce some set of mutants

and a test set is said to be adequate if it kills all of the non-equivalent mutants. The mutation

coverage measurement is the percentage of the non-equivalent mutants produced that are killed

by the test set. The aim is to produce a test set that achieves 100% coverage.

 IJMIE Volume 1, Issue 7 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
 http://www.ijmra.us

322

December
2011

4) PROPOSED WORK:

To demonstrate that Higher Order Mutation Testing leads to equivalent mutants we take the

example for swapping of two numbers in C language.

Original_Program

#include<stdio.h>

#include<conio.h>

void main()

{

int temp , x,y;

clrscr();

printf(“Enter the numbers to be swapped”);

scanf(“%d%d”,&x,&y);

temp=x;

x=y;

y=temp;

printf(“The numbers after swapping are%d%d”,x,y);

}

In the above program if value of x=5,y=10 than after swapping x will be equal to 10 and y will

be equal to 5. Now we introduce a single change(changed variable x to y) in the

Original_Program which is shown in Bold below and call it FOM(First Order Mutant)

FOM

1) temp=y;

2) x=y;

3) y=temp;

 IJMIE Volume 1, Issue 7 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
 http://www.ijmra.us

323

December
2011

Change is made at line1. If value of x=5, y=10 FOM will give the output as x=10, y=10.

Since this output is different from Original_Program we say that FOM is killed.

Now we introduce a single change to the FOM which is shown in Bold below and call it SOM

(Second Order Mutant)

SOM

1) temp=y;

2) y=x;

3) y=temp;

Change is made at line2. If value of x=5, y=10 SOM will give the output as x=5, y=10.

Since this output is different from Original_Program we say that SOM is killed.

Now we introduce a single change to the SOM which is shown in Bold below and call it TOM

(Third Order Mutant)

TOM

1) temp=y;

2) y=x;

3) x=temp;

Change is made at line3. If value of x=5, y=10 TOM will give the output as x=10, y=5.

Since this output is same as Original_Program we say that TOM is alive. Since there is

no test case that can kill TOM we say that this produces Equivalent Mutants. Higher in

the order we went, we got equivalent mutants.

 IJMIE Volume 1, Issue 7 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
 http://www.ijmra.us

324

December
2011

We depict the results of mutants in the table below.

MUTANT DATA & RESULT STATUS

X=5 Y=10

Original

Program

10 5 ----

FOM 10 10 KILLED

SOM 5 10 KILLED

TOM 10 5 ALIVE

The result is shown in graph below:

5) CONCLUSION:

The paper concludes that Lower Order Mutation Testing (LOM) is more powerful in finding

faults. As we move to Higher Order Mutation Testing –Third Order Mutants and higher,

Equivalent Mutants are obtained which have very high survival rate and hence turn out useless

for finding faults.

0

20

40

60

80

100

120

FOM SOM TOM

Su
rv

iv
al

 O
f

M
u

ta
n

ts

Order Of Mutation Testing

 IJMIE Volume 1, Issue 7 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
 http://www.ijmra.us

325

December
2011

6) REFERENCES:

 A. T. Acree. On Mutation. Phd thesis, Georgia Institute of Technology, Atlanta, Georgia,

1980.

 T. A. Budd. Mutation Analysis of Program Test Data. Phd thesis, Yale University, New

Haven, Connecticut, 1980.

 W. E.Wong. On Mutation and Data Flow. Phd thesis, Purdue University, West Lafayette,

Indiana, 1993.

 A. P. Mathur and W. E. Wong. An Empirical Comparison of Mutation and Data Flow Based

Test Adequacy Criteria. Technique report, Purdue University, West Lafayette, Indiana, 1993.

 A. S. Namin and J. H. Andrews. On Sufficiency of Mutants. In Proceedings of the 29th

International Conference on Software Engineering (ICSE COMPANION‟07), pages 73–74,

Minneapolis, Minnesota, 20-26 May 2007.

 A. P. Mathur. Performance, Effectiveness, and Reliability Issues in Software Testing. In

Proceedings of the 5th International Computer Software and Applications Conference

(COMPSAC‟79), pages 604–605, Tokyo, Japan, 11-13 September 1991.

 M. Sahinoglu and E. H. Spafford. A Bayes Sequential Statistical Procedure for Approving

Software Products. In Proceedings of the IFIP Conference on Approving Software Products

(ASP‟90), pages 43–56 Garmis Partenkirchen, Germany, September 1990. Elsevier Science.

 R. A. DeMillo, D. S. Guindi, K. N. King, W. M. McCracken, and A. J. Offutt. An Extended

Overview of the Mothra Software Testing Environment. In Proceedings of the 2nd Workshop

on Software Testing, Verification, and Analysis (TVA‟88), pages 142–151, Banff Alberta,

Canada, July 1988. IEEE Computer society.

 A. J. Offutt, G. Rothermel, and C. Zapf. An Experimental Evaluation of Selective Mutation.

In Proceedings of the 15th International Conference on Software Engineering (ICSE‟93),

pages 100–107, Baltimore, Maryland, May 1993. IEEE Computer Society Press.

 W. E. Wong and A. P. Mathur. Reducing the Cost of Mutation Testing: An Empirical Study.

Journal of Systems and Software, 31(3):185–196, December 1995.

 IJMIE Volume 1, Issue 7 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
 http://www.ijmra.us

326

December
2011

 K. N. King and A. J. Offutt. A Fortran Language System for Mutation- Based Software

Testing Software: Practice and Experience, 21(7):685–718, October 1991

 E. S. Mresa and L. Bottaci. Efficiency of Mutation Operators and Selective Mutation

Strategies: An Empirical Study. Software Testing, Verification and Reliability, 9(4):205–

232, December 1999.

 A. S. Namin and J. H. Andrews. Finding Sufficient Mutation Operators via Variable

Reduction. In Proceedings of the 2nd Workshop on Mutation Analysis (MUTATION‟06),

page 5, Raleigh, North Carolina, November 2006. IEEE Computer Society.

 A. S. Namin and J. H. Andrews. On Sufficiency of Mutants. In Proceedings of the 29th

International Conference on Software Engineering (ICSE COMPANION‟07), pages 73–74,

Minneapolis, Minnesota, 20-26 May 2007.

 A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. An Experimental

Determination of Sufficient Mutant Operators. ACM Transactions on Software Engineering

and Methodology, 5(2):99–118, April 1996.

 R. M. Hierons, M. Harman, and S. Danicic. Using Program Slicing to Assist in the Detection

of Equivalent Mutants. Software Testing, Verification and Reliability, 9(4):233–262,

December 1999.

 M. Harman, R. Hierons, and S. Danicic. The Relationship Between Program Dependence and

Mutation Analysis. In Proceedings of the 1st Workshop on Mutation Analysis

(MUTATION‟00), pages 5–13, San Jose, California, 6-7 October 2001. Published in book

form, as Mutation Testing for the New Century.

 IJMIE Volume 1, Issue 7 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
 http://www.ijmra.us

327

December
2011

7) AUTHORS PROFILE:

Shalini Kapoor received the bachelor degree in Computer Science and

Engineering from Haryana Engineering College, Jagadhri, India in 2003. She

received her Master degree in Information Technology from Karnataka State

University, Mysore, India in 2011. She has 2.5 years industrial experience

and 4.5 years teaching experience. Presently she is working in Computer

Science and Engineering Department of Guru Nanak Institutions Mullana.

Rajat Kapoor is currently qualified as CFA Level II, MBA Finance, Post

Graduate Diploma in Personnel Management & Labour Welfare, Single course

certification in Marketing Management, Single course certification in Business

Law, NSE Certified, and Diploma from Aptech Education Centre. He has more

than 6 Years of professional experience in Finance & Accounts domain serving Royal

Enterprises Group, YamunaNagar (Comprising of Royal Enterprises, Sumo Wood Industry, R.K

Industries) dealing in Water Treatment, Wooden Cooling Towers, Plywood, Veneer, Cable

Drums, Defence Boxes, Wooden Packing Boxes, etc business for 5+ Years, Pyramid IT

Consulting Pvt Ltd, Noida dealing in IT&ITES, Staffing, Recruitment business for 1 Year and is

currently working as Assistant Manager Finance at Accenture, Noida upon a process of Cairn

Energy India Pty Ltd. He is conceptually strong with an innovative and analytical approach to

the work with an eye for detail. He is in a habit of using a systematic approach in objectively

identifying the real source of a given problem, design solutions, think sceptically & test the

theories (related to the research works) in order to prove & improve the final product.

