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ABSTRACT: 

In many real-world applications, there are a number of dimensions having large 

variations in a dataset. The dimensions of the large variations scatter the cluster and confuse the 

distance between two samples in a dataset. This degrades the performances of many existing 

algorithms. This problem can be happened even when the number of dimensions of a dataset is 

small. Moreover, no existing method can distinguish whether the dataset has the highly repeated 

problem or low-density‟s problem. The only way to distinguish the problem is by a prior 

knowledge, which is given by the user. 

There are many methods to resolve this type of high dimensionality problem. The 

common way is to prune the non-significant features so that the features having large variations 

are removed and high-density cluster centers are obtained. Much research work has been carried 

out based on this criterion. The subspace clustering method is one of the well-known tools. The 

feature space is first partitioned into a number of equal length grids. Then, the density of each 

interval is measured. The features having low density are discarded and the clustering is 

conducted on the high density regions. Although these methods work very well on synthetic 

datasets, the pruned dimensions can carry useful information and hence, pruning them may 

increase the classification error rates.  

 

1 Introduction: 

In this paper, a new clustering algorithm is developed to handle this problem. Here, we 

introduce a new concept called sub-dimension. The key concept is to measure the similarity 

between two objects in several sub-dimensions. Here, we introduce a new concept called sub-

dimension. A dataset is separated into p parts, which are not disjoint. Each part has the same 

number of input samples as the original data, but a smaller number of dimensions. In our 

formulation, each part has the same number of dimensions and we call each of these dimensions 

a sub-dimension. If more than half the features of two objects belong to the same group, these 

two objects are said to belong to the same group. For example, assume that x1, x2 and x3 are 10 

dimensional data vectors. The data point x3 is said to be closer to x1 than x2 if more than half of 

the dimensions of x1 and x3 are closer to x1 than x2. Thus, if two patterns are very similar except 
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for a small number of features, this measure will preserve the similarity. Experiment results show 

that the clustering algorithm using this method gives better results than other methods.  

The organization of this paper is as follows. In Section 2, we introduce the low-density 

problem and the basic concept of our new similarity measure. After that, in Section 3, we 

introduce the new clustering method. Experiment results are given in Section 4. Conclusions are 

given in Section 5. 

 

2 Problem Statement: 

In this section, we indicate the problem of existing similarity to the large variation 

dimension. Then, we introduce our method. We now consider three 10- dimension data points x1 

= [0.5878, 0.9511, 0.9511, 0.5878, 0.0000, -0.5878, -0.9511,  -0.9511,  -0.5878, - 0.0000]
T
,  x2 = 

[4.9550, 3.1490, 3.3364, 2.0429, 0.0620, 0.9109, -0.6682, 3.7762, 3.3466,  4.2073]
T
 and x3 = 

[0.5878, 0.9511, 0.9511, 0.5878,  0.0000,  -0.5878,  -0.9511,  -0.9511,  -0.5878, 10.0000]
T
. 

These three patterns are shown in Figure 2.1. The one at the bottom is x1 while the one above x1 

is x2. The third vector x3 (marked by •) is almost the same as x1 except for the 10th dimension, 

which is far away from the x1. The variation in the 10th dimension of x3 is due to the presence of 

a noisy non-significant condition. The shapes of x1 and x3 are almost the same and they almost 

certainly belong to the same group. However, if we measure their similarity using the l2 norm, 

we will find that x1 and x2 are more likely to be in the same group.  The l2 norm distance between 

x1 and x2 is ||x1-x2|| = 9.4641 while the l2 norm distance between x1 and x3 is ||x1-x3||=10. Because 

of this, a clustering algorithm may produce unreliable results. 
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Figure 2.1. Illustration of the effect of a non-significant features on the similarity 

measure.  

Now, we introduce our method by reformulating the distance measure as follows. Let X = 

A1×A2×…Ad-1×Ad, where Aj represents the j-th dimension of the data with 1≤j≤d. We re-define 

the dimension of X as follows: X = B1×B2×…Bp-1×Bp, where p≤d, and Bj= Aj1 ×Aj2×…Aj(s-

1)×Ajs, where 1≤j≤p, 1≤j1, j2, …, js≤d and s is the number of features in each sub-dimension and s 

≤ d. Here the original dataset X is represented by d  non-overlapping subsets A1,  A2, …  and Ad, 

where Aj simply represents the set of data values of all samples along dimension j. To work with 

the sub-dimensions, we decompose X into many overlapping subsets B1, B2, …  and Bp, where 

Bj is the union of s subsets Aj1, Aj2, …  and Ajs. An input data vector xi is now decomposed into 

p vectors, xi(Bj). In the sub-dimension based similarity measure, xa is closer to xb than to xc if 

a Bj b Bj a Bj c Bj
Card j : x x || || x x

a Bj b Bj a Bj c Bj
Card j : x x x x  
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where card(S) refers to the cardinality (or the number of elements) of the set S. The 

above equation defines a new similarity measure between two objects, under which xa is closer 

to xb than to xc if xa(Bj) is closer to xb(Bj) than to xc(Bj) in more sub-dimensions. The above 

classification criterion can also be written as  

 

a Bj b Bj a Bj c Bj
Card j: x x x x

1

p 2
             (2.1) 

 

since 

a Bj b Bj a Bj c Bj
Card j : x x x x

a Bj b Bj a Bj c Bj
Card j : x x x x   

= the number of sub-dimension vector sets = p 

This means that xa is classified into the class of xb if for more than 50% of sub- 

dimensions xa is closer to xb than to xc, otherwise it is classified into the class of xc. To have a 

more reliable classification, we can require this ratio to be greater than 50%, for example, we can 

set it to 60%. However, in doing so, we may have to reject xa, that is, we cannot make a decision 

with enough confidence, if the ratio is between 50% and 60%. In practical applications, we can 

adjust this ratio to trade off between false positive and rejection rates in a pattern classification 

system.  

Now, we apply this concept to the three patterns x1,  x2 and x3. We first decompose these 

data vectors into sub-dimensional ones. For example, we can decompose  x1 into 8 sub-

dimensional vectors, each of which has three dimensions,  

T T T
1 2 3 2 3 4 8 9 10

1 1 1 1 1 1 1 1 1x ,x ,x , x ,x ,x ,..., x ,x ,x . Then we measure the similarity 

between all corresponding sub-dimensional vectors using the l2 norm. After this calculation, we 

say that objects x1 and x3 are closer than x1 and x2 if more sub-dimensional vectors between x1 

and x3 suggest they are closer. Obviously, for the three patterns x1, x2 and x3, all the sub-
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dimensional vectors between x1 and x3 give a smaller value than x1 and x2 except the last one, 

which contains the 8th, 9th and 10th dimensions. Thus, we say that x1 and x3 are closer than x1 

and x2. 

 

3 The New Clustering Algorithm: 

In this section, we introduce the new clustering method. There are a total of five steps in 

our method with the number of group ctotal given by the user. These steps are given as follows. 

Step 1: Let X=
T

1 2 d 1 d

i i i ix ,x ,..., x ,x  (for 1≤i≤n) be the original dataset sorted in 

ascending order with respect to the standard derivation of each dimension. This dataset is divided 

into lower and upper half: G
1
 = [xi

1
, xi

2
, … , xi

d/2
 ]

T
 and G

2
 = [xi

d
 , xi

d-1
 , … , xi

d/2+1
]

T 
. Then, G

1
 

and G
2
 are mixed in an alternative manner: Gs = [xi

d
 , xi

d/2
 ,xi

d-1
 , xi

d/2-1
  … , xi

d/2+1 
, xi

1
 ]

T
 . If the 

difference in the standard derivation between two consecutive dimensions of Gs is larger than a 

threshold   (which is taken as 2 in all the experiments), we will take Gs = X. We take Gs as a 

sorted dataset in the second step of the method. 

Step 2: We divide the datasets X R
d
 into several sub-dimensional sets which have 

smaller dimensions: X(j)={xi(j)} where xi(j)  R
s
, j is the jth sub-dimension of the data 1≤j≤p and 

s≤d. In this thesis, s=2 and s=3 are adopted. For example, xi has 10 dimensions, its R
2
 and R

3
 

sub-dimensional sets will be [xi
1
,xi

2
]

T
, [xi

2
,xi

3
]

T
 ,… [xi

9
,xi

10
]

T
 , and [xi

1
, xi

2
,xi

3
]

T
 , [xi

2
,xi

3
,xi

4
 ]

T
, …, 

[xi
8 ,

xi
9
,xi

10
]

T  
respectively. 

Step 3: We apply the FCM algorithm to each of the sub-dimensional sets with the input 

parameter from c = 2 to c = ctotal and evaluate the clustering results. This is equivalent to 

conducting the cluster validity on each sub-dimensional set. For each sub-dimensional set, only 

the clustering result with the largest Imod(c) is considered. The original I-index can be found in 

the paper [Maulik and Bandyopadhyay 2002].  

Imod(c) is a modified version of the I-index. The equation for Imod(c)  is given as follows: 
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Q

1
mod c

c

1 E
I c D

c E
   (3.1) 

where the power Q is used to control the contrast between different cluster 

configurations. In this thesis, we take Q = 1. Ec and Dc are defined as  

 

n c
2

c ik i k

i 1 k 1

E x v    (3.2)  

 

c

c i j
i, j 1

D max v v    (3.3) 

where  vk is the prototype of class k generated by the clustering algorithm. ik is a binary 

variable. If xi is a data point closest to vk,  ik =1. Otherwise, ik =0. The difference between the 

proposed modified I-index and the original I-index is that the function Ec has a square power in 

the modified I-index while having no square power in the original I-index. 

 

Step 4: Based on the results in Step 3, we are able to get a partition matrix P
j
s.  This partition 

matrix is a binary matrix. If the sub-dimensional points xp(j) and xq(j) belong to the same group, P
j
s 

(p,q)=1. Otherwise, P
j
s (p,q)=0. Now, we define the variable Ps as the mean of these partition 

matrices. 

d s 1
j

s s

j 1

1
P 1 P .

d s
   (3.4) 

As we adopt s=2 and s=3 for sub-dimensional sets, there are in total two variables P2 and P3. 

The average partition matrix P is defined as P = (P2+P3)/2. Thus, if there are two data points xp 

and xq and their conditions are very similar to each other, the value P(p,q) will be small. 
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Step 5: We consider the average partition matrix P as a similarity matrix in a hierarchical 

clustering algorithm. We adopt the complete link method in the hierarchical clustering algorithm 

to get the clustering result. Table 3.1 summarizes these five steps.  

 

Algorithm: 

1. The dataset is sorted according to its dimensions. 

For s = 2 to 3, perform steps 2 to 4: 

2. The dataset X is divided into several sub-dimensional sets, each with dimension s. 

3. The FCM algorithm is applied to each sub-dimensional set with the input parameter c 

varied from c=2 to c=ctotal. Then, in each sub-dimensional set, the clustering results with 

largest Im(c) value will be considered.  

4. By making use of these clustering results, the matrix Ps can be obtained. 

5. The average partition matrix P=(P2+P3)/2 is computed. By taking P as a distance matrix, 

the hierarchical clustering algorithm is applied to produce the final result. 

Table 3.1. Summary of our clustering algorithm. 

 

 

4 Experiment Results: 

In this section, we conduct eight experiments to test the robustness of our method. Four 

different clustering algorithms are chosen to compare with the performance of our method. They 

are the GMM, the FCM algorithm, the hierarchical clustering method with complete link (HC) 

and the HARP algorithm, which is a subspace clustering method. 

Each algorithm except HC will be performed 10 times to each real world dataset. In this 

paper, the data samples we adopt from the real world datasets have class labels. We make use of 

these labels for evaluating the algorithms. For example, after applying the FCM algorithm, we 

obtain c partitions C1,…Cc. In each original group, we find the number of objects correctly 

recognized in C1,…Cc so that the sum of these numbers reaches maximum. Based on the number 
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of correctly classified objects, we will compare the algorithms in three ways. They are the 

maximum, mean and standard derivation of the number of correctly recognized objects in the 10 

runs. Also, we will show the number of correctly recognized objects in each group for the best 

clustering result among 10 runs.  

 

4.1 Synthetic Dataset 

We perform three experiments based on three synthetic datasets. In each of these 

datasets, some of the dimensions have very large variance compared with other dimensions. This 

situation is similar to the one we introduced in Section 2. This can make the conventional 

distance measure error prone.  

Example A Synthetic Dataset 1: We consider a ten dimensional dataset with two groups. The 

first four dimensions are the same and they are generated by two normally distributed functions 

N(0,1) and N(5,1). Each of them consists of 500 points.  The last six dimensions are generated by 

a normally distributed function which is N(0,100) with 1000 points. Thus, the data matrix 

consists of a size of 1000×10. In this example, there are six components, which are non-

significant conditions having large variations for the two groups, while there are four 

components, which contain information of the two groups. Figure 4.1(a) shows mean values of 

the two groups. The two groups can be clearly separated in terms of the first four dimensions but 

they cannot in terms of the last six dimensions. If we apply the FCM algorithm to the first four 

dimensions of the dataset, 100% accuracy will be obtained. However, the insertion of non-

significant information from the extra six dimensions degrades the clustering result significantly. 

The clustering results for this dataset are given in Table 4.1. We can see that the GMM, FCM 

and HC clustering algorithms obtain only half the accuracy rate. The HARP algorithm has a 

much higher accuracy than the non- subspace clustering algorithm. As the higher dimensions are 

pruned in HARP, the subspace clustering algorithm has a better performance than non-subspace 

clustering algorithm. Our method obtains a 100% accuracy rate. One may think that the 

clustering result of our method may be unreliable since the total number of dimensions that do 

not contain the information of the two groups is more than the total number of dimensions that 

contain the information of the two groups. 
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(a) The mean values of the two groups for each 

of the 10 dimensions. 

 

 

 

 

 

 

(b) P2 for the last six dimensions of the 

dataset, which is a random matrix. 
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(c) The partition matrix for Synthetic Dataset1. 

Figure 4.1. The mean values of the synthetic dataset 1 and its partition matrices. 

However, in our method, we divide the dataset into several sub-dimensional sets and 

conduct data clustering for each of them. In the third and fourth steps of our method, we found 

that only the first four dimensions shared the same clustering results. However, the last six 

dimensions produce very different clustering results in each sub- dimensional set. Thus, the 

variable P2 for the last six dimensions is just a random matrix and does not contribute much to 

the average partition matrix P. The matrix P2 is given in Figure 4.1(b). The darker pixels 

represent larger values in the partition matrix and vice versa. Figure 4.1(c) shows the average 

partition matrix P for synthetic data „1‟ after permutating the matrix P so that the first group 

consists of the first 500 elements. We can clearly see that our method can detect 500 points in 

one group and another 500 points in another group. 

 

Groups GMM FCM HC HARP Our method 

1 297 255 421 478 500 

2 206 249 99 492 500 

Total(Max) 503 504 520 970 1000 

 

Table 4.1. Clustering results for Synthetic Dataset 1. 

 

 

Example B Synthetic Dataset 2: Now, we consider a twenty-four dimensional dataset 

with three groups. The first four dimensions are generated by three normally distributed 

functions N(0,1), N(5,1) and N(10,1).  Each of these consists of 500 points. The last 21 

dimensions are generated by the normally distributed function with a difference variance from 5 

in the fifth dimension to 100 in the twenty-fourth dimension and the variances between 

consecutive two dimensions have a difference of 5. If we put the variances from the fifth to 
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twenty fourth dimensions in a vector, it will become [5, 10, 15, 20, _, 100]
T
. Thus, the data 

matrix consists of a size of 1500×24. This synthetic dataset is different from the previous one. 

The elements of the Synthetic Dataset 1, which are non-significant conditions, have exactly the 

same variances. However, in this dataset, the variances are not the same but are monotonic 

increasing. The clustering results for this dataset are given in Table 4.2. Again, we can see that 

the GMM, FCM and HC algorithms obtain only half the accuracy rate. For the HARP algorithm, 

the result is not as good as the one given in Synthetic Dataset 1 (Table 4.1). Its accuracy is 

reduced to around 75%. This shows that the HARP algorithm could not prune the noise 

dimensions well if they are very different. Our method obtains a 99% accuracy rate. In this 

experiment, we can see that the new technique is able to yield more accurate results than 

conventional methods.   

 

Groups GMM FCM HC HARP Our method 

1 200 236 109 402 494 

2 209 192 153 498 497 

3 134 113 155 205 494 

Total(Max) 534 541 517 1105 1485 

Table 4.2. Clustering results for Synthetic Dataset 2. 

 

Example C Synthetic Dataset 3: Now, we consider a ten dimensional dataset with three 

groups. The first four dimensions are generated by three normally distributed functions N(0,1),  

N(5,1) and N(10,1).  Each of them consists of 500 points. The last six dimensions are generated 

by the normally distributed function with two different variances. The fifth to eighth dimensions 

are generated by a normal distribution function with variance 10 while the ninth to tenth 

dimensions are generated by a normal distribution function with variance 10000. Thus, the data 

matrix consists of a size of 1500×10. The clustering results for this dataset are given in Table 4.3. 

Similar to Synthetic Dataset 2, the GMM, FCM and HC clustering algorithms have only half the 

accuracy rate. The HARP algorithm has an 83% accuracy rate. Our method obtains 100% 
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accuracy. In these experiments, we can see that our method is able to yield more accurate results 

although both subspace and traditional clustering algorithms cannot. 

Groups GMM FCM HC HARP Our method 

1 200 198 117 471 500 

2 209 173 323 470 500 

3 134 155 66 295 500 

Total(Max) 534 526 506 1236 1500 

 

Table 4.3. Clustering results for Synthetic Dataset 3. 

 

4.2 Real World Data 

In this section, the robustness of our method is shown by real world datasets. Five real 

world datasets are used. They are; iris, wdbc, wine, yeast cell cycle and sporulation datasets. The 

information for the first three datasets can be found in the following table 4.4.  

 

Name Full Name No. of 

features 

Total no. of 

samples 

No. of groups Normalization  

Iris  Iris Plant Database 4 150 3 Yes  

Wbcd  Wisconsin Breast 

Cancer Databases 

9 683 2 No  

Wine  Wine Recognition 3 178 3 Yes  

Table 4.4. Information of datasets. 

 

The last two datasets are microarray datasets and their information is given as follows: 
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Yeast cell cycle data: This dataset was published by Cho et al [Cho et al. 1998]. It 

consisted of 6220 genes with 17 time points taken at 10 minute intervals. In the study of Yeung 

et al., a subset of 384 genes is adopted [Yeung et al. 2001]. This subset of datasets can be found 

at the website (http://faculty.washington.edu/kayee/model/). We normalize each gene expression 

profile with zero mean and unit variance. This dataset has five cycle phases. They are; early G1 

phase, late G1 phase, S phase, S2 phase and M phase.  

Sporulation data: This dataset consists of 6118 genes and can found at the website 

(http://cmgm.stanford.edu/pbrown/sporulation). We only take the genes with the value of root 

mean square of the log2 transformed data greater than 1.13. After the pre-processing, we get a 

subset of the data, which contains 1136 genes of the following seven phases: rapid transient 

induction („metabolic‟), early I induction, early II induction, early-middle induction, middle 

induction, mid-late induction and late induction. 

The clustering results for these five datasets are given in Tables 4.5, 4.6, 4.7, 4.8 and 4.9. 

Except for the wine data, the HARP algorithm does not yield better results than the three 

clustering algorithms (GMM, FCM and HC). Our method yields the largest numbers of correctly 

classified objects in all cases. Also, the standard derivation of our method is very small. This 

implies that our method is very stable and able to yield robust solutions. 

Groups GMM FCM HC HARP Our method 

1 50 50 50 49 50 

2 40 47 49 38 48 

3 49 37 27 12 43 

Total(Max) 139 134 126 99 141 

Mean  124.9 134 / 99 141 

Std 19.1512 0 / 0 0 

 

Table 4.5. Clustering results for the iris data. 
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Groups GMM FCM HC HARP Our method 

1 57 50 56 55 58 

2 48 45 473 40 62 

3 24 27 21 44 45 

Total(Max) 129 122 120 139 165 

Mean  124.7 122 / 139 165 

Std 3.0569 0 / 0 0 

Table 4.6. Clustering results for the wine data. 

 

Groups GMM FCM HC HARP Our method 

1 351 356 357 354 344 

2 155 130 20 67 192 

Total(Max) 506 486 377 421 536 

Mean  484.1 486 / 421 516.9 

Std 23.8768 0 / 0 13.4367 

Table 4.7. Clustering results for the wdbc data. 

 

Phases GMM FCM HC HARP Our method 

Early G1 60 50 48 41 48 

Late G1 115 67 112 116 120 

S phase 31 10 1 23 28 

G2 24 38 46 31 35 

M Phase 22 51 49 32 52 
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Total (Max) 252 216 256 243 283 

Mean 199.9 216 / 243 282.3 

Std 29.6403 0 / 0 0.9487 

Table 4.8. Clustering results for the yeast cell cycle data. 

 

 GMM FCM HC HARP Our method 

Metabolic 4 1 1 0 3 

Early G1 172 172 244 241 173 

Early G2 24 7 4 0 38 

Early middle 95 66 8 5 43 

Middle 29 32 21 9 60 

Mid-late  0 2 2 1 3 

Late 0 0 0 0 0 

Total (Max) 324 280 280 256 353 

Mean 306.9 280 / 256 340.4 

Std 13.4449 0 / 0 21.8744 

Table 4.9. Clustering results for the sporulation data. 

 

 

5 Conclusion: 

In this paper, we have introduced a new similarity measure to resolve the problem of high 

dimensionality with low-density. The new algorithm does not prune any dimension in the 

dataset. The key concept of this algorithm is to measure the similarity between two samples in a 

number of sub-dimensions. Such a similarity measure reduces the effects of noise in the data. We 
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have performed eight experiments to test the robustness of the method including three synthetic 

datasets, three real world datasets and two microarray datasets. We have also compared our 

method with four different clustering algorithms. Experiment results show that our method yields 

better results than existing clustering algorithms.  
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