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ABSTRACT:  

The paper deals with the numerical solution of IVPs for systems of stiff ODEs with particular 

emphasis on implicit linear multistep methods (LMM) particularly the backward 

differentiation formulae (BDF). In this paper we investigate the current strategies that are 

used to terminate the Newton iterations in the Matlab Code ode15s we analyse the algorithms 

for terminating the Newton iterations as implemented in the code ode15s. We thenmodify the 

existing termination strategy. Our numerical experiments reveal an improvement in terms of 

computational costs. 
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1 Introduction 

The paper is concerned with the numerical solution of initial value problems (IVP) for 

systems of ordinary differential equations (ODEs). These are usuallywritten in the form 

 

 

In the literature some initial value problems (1) are referred to as stiff. A prominent feature 

for these problems is that they are extremely difficult tosolve by standard explicit methods. 

The time integration of stiff systems isusually achieved using implicit methods, and for many 

codes by linear multistepmethods. A linear multistep method aims at producing a sequence of 

values which approximates the true solution of the IVP on the discrete points . Thus 

the linear multistep formula is a difference equation involving anumber of consecutive 

approximations , from which it willbe able to compute sequentially the 

sequence Theinteger is called the step number of the method and for a 

linear multistepmethod . When , the method is called a 1-step method. 

Linearmultistep methods are also called linear k-step methods [3], [5], [7], [8], [9]. Instandard 

constant stepsize form a linear multistep or k-step method is defined thus: 

 

 

where and  are constants and  = 1. denotes 

and is the stepsize. The condition that  = 1removes the arbitrariness that arises 

from the fact that both sides of the IVPcould be multiplied by the same constant without 

altering the method. Thelinear multistep method (2) is said to be explicit if and implicit 

if . 

     Now let in (2) then the result is a class of methods known as the 

backward differentiation formulae, BDFs [15]. We concentrate onBDFs which take the form 

 

 

Where  is the stepsize, is the order and the coefficients depend on only. In practice 

codes for integrating stiff IVPs vary the stepsize and/or order resulting in variable step 

variable order BDF implementations [1], [4], [13], [17],[23]. At each integration step we 

must solve the nonlinear equation 

 

where is a known value. 

    To solve for most codes use the Newton iterative method and its variantsin the 

following form 
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with the starting value known and “fairly” accurate. For the full Newtonmethod 

 

 

 

The use of the Newton method is due to the stiffness phenomenon. For largeproblems 

evaluating the Jacobian,  (and hence the Newton iteration matrix ) and solving 

the linear algebraic system are by far the most computationally expensive operations in the 

integration. There are various strategiesused in practice to try and minimise the cost of 

computing the Jacobian and theNewton matrix [4], [6], [14], [18]. These measures are mainly 

centredonadministering the iteration matrix in (6). Other cost saving measures in practical 

codes include options of using analytical or finite difference Jacobians and at times taking 

advantage of special structures (banded or sparse) for the linearsolves described by (5) and 

(6). 

    Despite being useful in the error analysis of linear multistep methods the truelocal 

truncation error is rarely used in practical codes. Instead it is estimatedusing some kind of 

error estimators, the most common being the Milne errorestimator. 

    We conduct our numerical experiments using a code from the Matlab odesuite [20] known 

as ode15s [19]. The code is a variable step variable order code and integrates stiff initial 

value ordinary differential equations. In this codethere is an option to use either some 

modified BDFs or use the standard BDFsas correctors. The iteration is started with a 

predicted value 

 

where  denotes the backward di¤erence operator. This is the backward difference form of 

the interpolating polynomial which matches the back values, and then 

is evaluated at . The code implementssome form of the Milne error estimator. Most of the 

test problems used can befound in the Matlab ode suite [20] . 

    We conduct our experiments using the default weighted infinity norm. Wefurther evaluate 

global errors to determine whether the modified code yields the same solution as theoriginal 

code. 

2 Current termination strategies 

2.1The underlying theory 

In solving the IVP 
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these codes compute an approximate solution, , of the implicit equation 

 

to satisfy, in principle 

 

where is a user specified tolerance,  is a constant usually less than unityand denotes 

the true solution of (8). Alternatively, a test will be to accept if the residual satisfies 

 

 

 In practice most codes that use iterative methods to solve the implicit equations(8) accept the 

approximation when 

 

 

 

where and are the successive iterates, or 

 

 

where is the current iterate. The tests are called the displacement test andthe residual test 

respectively. Houbak et al [11] conduct a comparative studyand reveal that it often takes 

more computational work to satisfy (12) than (11)with little or no gain in the accuracy of the 

numerical solution of the associatedinitial value problem. 

    We are mainly interested in how to terminate the iterations 

 

where is an approximation to the Newton iteration matrix, in order to obtain a good 

approximation,  to the solution . It is common practice toterminate the iterations 

based on the norm of the difference,  

 

 

alone. The iterations are terminated as soon as  is small enough, but Shampine [21] argued 

that a small difference says nothing about how close is to , nor even that the 

iteration process is converging. But if the convergencerate factor of the iterative process

 then a small difference implies that is an acceptable approximation to . This is 

discussed in [2, p612] whereit is shown that under appropriate the assumptions and for  a 

sufficientlygood approximations to the solution , then the simplified Newton 
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methodconverges linearly, that is, with factor . In the stiff ODE 

applications is generally a good approximation. 

It can be shown that 

 

 

where and is the simplifiedNewton Iteration 

matrix. Now assume throughout the region of interest that is bounded above by some . It 

is hoped that . In fact for the infinitynorm if then by a theorem in [12, p111] the 

iterates converge to thetrue solution if is sufficiently close to . A similar theorem 

is discussedin [16, p119] for the general norm. There follows 

 

 

 

 

and so at the time is computed, can be estimated as 

 

 

 

 Now applying the triangle inequality to 

 

We get 

 

 

 

 

    It is clear that the iteration error should not be larger than the required tolerance. Therefore 

the iteration can be stopped when 
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Where  is a suitable constant and  accepted as , an 

approximation ,where is given by (15). It is clear from (15) that at least two iterationsare 

required to estimate the rate of convergence and hence apply (17). The rateof convergence  

at the previousintegration step can be approximated by takingthere the largest observed . 

This can then be used to judge if in the currentstep, the iterate after 1 (one) Newton iteration, 

is acceptable. Note that therate at the previous integration step, is only applicable to the 

current step if thesolution and the factor remain much unchanged. This is further 

discussedby Shampine in [21] and Hairer and Wanner in [10, pp119-121]. 

    The estimate of the convergence rate, ,at the current iterate is also used todecide when 

to terminate the Newton iterations. If for some, ,thenthe iteration is regarded as 

being too slowly convergent and is then terminated and restarted with a different obtained 

using a different stepsize/order andpossibly an updated Jacobian matrix. In practice we set the 

maximum numberof iterations, If the number is reached before the iteration 

convergesthen the iterations are terminated and the process restarted. 

2.2The pseudo code 

In ode15s the Newton iterations are terminated as follows. We give each optiona case number 

for ease of discussion. 

 IF where is the machine epsilon, the current is accepted. This 

is a typical (relative) displacement test. All norms areweightednorms (CASE1). 

 ELSE IF the current iteration is the first (CASE2) 

o IF the convergence rate,  from the previous step is available. That is, if the current time 

step is not the first time step, then the first iterate  is accepted If 

 

 

where is now a scalar (CASE2(A)). 

o ELSE the convergence rate is set to zero    (CASE2(B)). 

o ENDIF 

 ELSE IF the convergence rate at the current iterate 

 

 

 

then the iteration is regarded as too slow and is terminated and restarted with a different obtained 

using a different stepsize/order and possibly an updated Jacobian matrix(CASE3). 

 ELSE the convergence rate at the current time step is set to 

 

 

(CASE4) and 

o IF 

 

 

then the iterate is accepted. Note the test (18) is more stringent than (20)because we are 

using the old rate,  (CASE4(A)). 
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o ELSEIF the iteration has reached the maximum allowed iterations, then it is regarded as 

too slow and restarted  (CASE4(B)). 

o ELSE IF 

 

 

the iteration is also regarded as too slow and restarted (CASE4(C)). This is be- 

cause the size of  after iterations can be estimated by 

 

 

 

                    see Hairer and Wanner [10]. 

o ENDIF 

 

ENDIF 

 

   The norms are either the weighted 2-norm or the weighted in infinity normwith the weights 

 

where for a vector the notation  denotes a vector of reciprocals of eachelement 

that is a vector whose elements are and denotes a vector whose elements are 

. The parameters and arethe user supplied vectors of absolute and relative 

tolerances respectively and is a vector whose elements are . Note that the 

weights donot depend upon and unless the magnitude of the elements of  and 

are small compared to  , referred to as the threshold. The defaultvalue of the 

threshold is  

 

3. Terminating simplified Newton iterations: A new strategy 

3.1 The underlying theory 

 

We apply the theory of Dorsselaer and Spijker [24] to justify a strategy forstopping the 

Newton iteration in ode codes. The ideas are tested on ode15s.The proposed termination 

strategy is based on the theory of Dorsselaer andSpijker [24] and Spijker[22] where for 

particular classes of problems the errorcommitted by stopping the Newton iterations in the 

numerical solution of stiff IVPs is estimated and related to the local discretization error of the 

underlyinglinear multistep method. The theory is such that if we assume the initial guess  

satisfies 
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then ([22, Theorem 2.4] for mildly nonlinear problems and [24, Theorem 4.3]for highly 

nonlinear problems, the relation (22), with a moderate O-constant K,imply that 

 

 

 

for the simplified Newton method. Both the above classes of the highly andmildly nonlinear 

problems are known to be dissipative, that is the logarithmicnorm of the Jacobian 

matrixsatisfies 

 

for in the domain of . Furthermore according to Dorsselaer and Spijker [24, Remark 2.3, 

p.188] if the differential equation and the inequality occurring inthe dissipativity condition is 

replaced by  and 

. 

That is  

 

 

for in the domain of  then the theory is still valid. The value of isproblem dependent and 

could be di¢ cult to establish in practice. Hence we usethe strategy without checking how 

dissipative the test problem is. 

 

3.2 The proposed strategy 

In practical codes the intention is to compute an approximate solution, , at each time 

step,  of the implicit equation 

 

to satisfy, in principle 

 

 

Where, is a user specified tolerance, is a constant usually less than unityand is the true 

solution. Since the true solution is generally unknownthe codes commonly use the estimate 

of the local truncation error to decidewhether to accept  as a good approximation to the true 

solution. The localtruncation error is usually estimated using the Milne error estimator, in 

whichthe computed approximation is accepted if 



             IJMIE           Volume 4, Issue 4           ISSN: 2249-0558 
_______________________________________________________ 

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories 
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A. 

International Journal of Management, IT and Engineering 
http://www.ijmra.us 

 
254 

April 
2014 

 

where, is the predicted solution and is the Milne error coefficient. This isusually referred 

to as the local error test. 

    The common practice is to solve the nonlinear equation (23) as accuratelyas possible and 

then use the local error test (25) to check if the nearly exactsolution of the nonlinear system, 

 , can be accepted as a good approximation tothe true solution. Our opinion is that a lot of 

computations are wasted in tryingto solve the nonlinear system as accurately as possible 

(until the iterative solverconverges) which could result in „oversolving‟. We propose a 

strategy which issuch that we terminate the iterations as soon as the current iterate 

satisfiesthe local error test 

 

without necessarily satisfying the Newton convergence test and regardless of the number of 

iterations performed. Of course, if the iterative solveris too slow in converging to the solution 

of the nonlinear system, or the numberof maximum allowed iterations is reached, then the 

iterative process should bestopped and appropriate action taken, see section 2.2. Note that 

iterative solvercan converge to a solution which does not satisfy the local error test. 

Furthermore note that our proposed strategy reduces to the current implementation ifthe 

current iterate in (26) can also pass the Newton convergence test. 

 

We note with concern that in most practical codes the stepsize, to beused at the next 

time step, is evaluated by using the local error estimatefrom the previous successful time 

step, say 

 

Hence terminating the Newton iterations before full convergence may seriouslycontaminate 

the error estimate and thereby destroy the overall stepsize selectionstrategy. The safe use of 

the new termination strategy might require a morerobust stepsize strategy than the one 

currently in ode15s. 

    In our proposed implementation we do not always use the converged Newton solution 

in the Milne error test, but in the derivation of the Milneerror estimator the solution 

of the nonlinear system is used. Instead we usethe Newton approximation after iterations, 

where, . This couldrender the use of the Milne error estimate as not applicable in 

our strategy.Now, note that 

 

 

Where, where, is independent of stiffness and , 

[24]. For This implies that the Milne errorestimate is still valid for , 

and hence for any . In the case of ode15s,the code estimates the leading term of the 

local truncation error via, 
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 In the code this is implemented as a Milne error test with Milne coefficients as

where is the order of the BDF. 

    Suppose now that after  iteration of the simplified Newton process, andbefore the test for 

convergence, the local error test is carried out. If the errortest is satisfied, there may be other 

possibilities, for example 

(P.1) accept without checking convergence, 

(P.2) carry out further Newton iterations until convergence and accept the step. 

    Using possibility (P.2) will only recover all the computational costs our strategy is trying 

to save. Note that if the local error test fails, the iterative processis continued. 

    Our strategy is implemented alongside the other termination strategies inthe original 

ode15s as depicted in Figure 3.2. 

    The strategy used in ode15s is shown in Figure 1 (excluding the dottedline part), also see 

the pseudo code in section 2.2. Our modifications are shownby the addition of dotted lines in 

Figure 3.2, where by convergence rate test we are referring to the test, if 

 

 

then accept the Newton iterate as , where for the first iteration the test ismore strict, 

since is the convergence rate factor from the previousstep and  for any 

other iterate. By we denote the iteration counter, , denotes the smallest possible 

stepsize and is the maximum numberof allowed iterations. The quantities and 

are two successive Newtoniterates and is the Newton correction. 
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Figure 1: The modified strategy alongside the existing research 

 

4   Numerical Experiments 

We incorporate our strategy into ode15s and call the resulting code newode15s.We use 

various test problems including those in the Matlab ODE suite [19]. Itshould be noted that 

some of the test problems used in our experiments mightnot satisfy the basic assumptions 

(a.1) and (a.2) discussed earlier. The statisticsobtained are in Table 1 for the linear test 

problems, Table 2 for test problemswhich are known to be dissipative and Table 2 (low 

accuracy), Table 4 (mediumaccuracy), Table 5 (high accuracy) for the nonlinear test 

problems. To verifythat our new strategy does not yield wrong solutions compared to those 

obtainedusing ode15s (code A) we compared the infinity norms of the maximum global 

errors over all the specified output points of the solutions obtained using themodified code, 

newode15s (code B) to those obtained using ode15s. We also compare the maximum 

weighted infinity norm of the global errors over all the specified output points. 

    The theory of Dorsselaer and Spijker [24] is valid when the asymptotic condition, as  

holds. We investigate the significance of this asymptoticcondition, by taking a closer look at 

ds1ode It has been shown in Dorssalaerand Spijker [24] that the test problem ds1ode satisfy 

the assumptions (a.1) and(a.2). We force both codes to use smaller stepsizes by demanding 

more accuracyvia the use of and .  In both codes the local error in isestimatedin 

each step and made to satisfy 
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and by default  and Test problem ds1ode is ideal forthis 

investigation as it has only one solution and satisfies the assumptions (a.1)and (a.2). The 

results obtained are in Table 2. 

Low accuracy solution:  

Test 

Problem 

Code Time 

Steps 

Failed 

Steps 
 

evals 

 

Evals 

LUs Linear  

Solves 

Flop 

Count 
  

a2ode A 

B 

119 

119 

0 

0 

154 

131 

1 

1 

23 

23 

142 

119 

121599 

115022 

9.722e-5 

9.7.7e-5 

0.575 

0.576 

a3ode A 

B 

138 

138 

0 

0 

282 

144 

1 

1 

25 

25 

276 

138 

81953 

69623 

0.0033 

0.0033 

0.5448 

0.5448 

b5ode A 

B 

1243 

1243 

140 

140 

2774 

1531 

1 

1 

335 

335 

2766 

1523 

676899 

497381 

0.0131 

0.0131 

482.95 

482.95 

Fem1ode A 

B 

57 

79 

9 

18 

164 

167 

1 

1 

23 

36 

113 

116 

2987466* 

4154929 

0.0225 

0.0224 

200.86 

168.92 

Fem2ode A 

B 

49 

92 

12 

21 

167 

201 

5 

5 

21 

36 

117 

151 

104542* 

143741 

0.0037 

0.0038 

10.782 

11.202 

Hb3ode A 

B 

806 

761 

201 

190 

1863 

1144 

1 

1 

325 

314 

1860 

1141 

247876 

220740 

4.770e-30 

4.776e-30 

0.227 

0.228 

Medium accuracy solutions:  

a2ode A 

B 

208 

208 

1 

1 

277 

222 

1 

1 

35 

35 

265 

210 

208309 

192530 

6.7609e-7 

6.7600e-7 

0.0717 

0.0682 

a3ode A 

B 

226 

226 

2 

2 

462 

236 

1 

1 

39 

39 

456 

230 

132381 

112287 

1.0163e-5 

1.0163e-5 

0.0034 

0.0034 

b5ode A 

B 

2827 

2827 

1 

1 

5664 

2837 

1 

1 

235 

235 

5656 

2829 

1289519 

876791 

3.2047e-4 

3.2047e-4 

81.7048 

81.7048 

Fem1ode A 

B 

411 

399 

101 

98 

770 

647 

1 

1 

201 

195 

719 

596 

22653031 

21366984 

0.0013 

0.0012 

32.3111 

42.6499 

Fem2ode A 

B 

74 

143 

13 

28 

222 

276 

6 

5 

25 

48 

162 

226 

141393* 

203546 

6.6488e-6 

6.6855e-6 

0.3020 

2.0950 

Hb3ode A 

B 

781 

782 

195 

199 

1794 

1183 

1 

1 

324 

326 

1791 

1180 

245255 

227851 

2.3552e-30 

3.1542e-30 

0.1122 

0.1504 

High accuracy solution:  

a2ode A 

B 

278 

278 

3 

3 

357 

297 

1 

1 

47 

47 

344 

284 

271587 

254603 

1.332e-7 

1.313e-7 

0.0556 

0.0548 

a3ode A 

B 

330 

330 

5 

5 

676 

346 

1 

1 

56 

56 

670 

340 

180291 

150971 

3.087e-7 

3.087e-7 

1.624e-4 

1.624e-4 

b5ode A 

B 

6052 

6052 

2 

2 

12116 

6064 

1 

1 

404 

404 

12108 

6056 

2713944 

1830380 

5.672e-5 

5.672e-5 

15.680 

15.680 

Fem1ode A 

B 

1231 

1219 

323 

321 

2232 

1913 

1 

1 

626 

621 

2181 

1862 

6966142 

6723222 

3.0938e-4 

3.102e-4 

10.098 

11.243 

Fem2ode A 

B 

87 

181 

12 

25 

256 

322 

7 

6 

27 

56 

186 

262 

160991* 

240599 

7.438e-7 

7.459e-7 

0.039 

0.388 

Hb3ode A 

B 

780 

774 

201 

207 

1814 

1191 

1 

1 

330 

334 

1811 

1188 

245596 

230511 

8.834e-30 

5.127e-30 

0.421 

0.245 

           

           

 

Table 1: Statistics obtained for linear test problems for ode15s (code A) andnewode15s (code 

B). The test problems, except fem2ode, have constant Jacobians. The starred(*) entries are 

for test problems where the modified code performs more flops. 

  



             IJMIE           Volume 4, Issue 4           ISSN: 2249-0558 
_______________________________________________________ 

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories 
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A. 

International Journal of Management, IT and Engineering 
http://www.ijmra.us 

 
258 

April 
2014 

 

Low accuracy solution:  
Test 

Problem 

Code Time 

Steps 

Failed 

Steps 
 

evals 

 

Evals 

LUs Linear  

Solves 

Flop 

Count 
  

ds1ode A 

B 
52 

60 

0 

0 

75 

62 

1 

1 

14 

16 

73 

60 

22634* 

23420 

4.972e-7 

1.835e-4 

4.967e-4 

1.834e-2 

ds2ode A 

B 
144 

180 

4 

12 

258 

212 

2 

2 

31 

45 

256 

210 

44062* 

52341 

7.808e-4 

9.960e-4 

4.457 

5.116 

ds4ode A 

B 
143 

107 

96 

35 

391 

196 

38 

17 

133 

66 

389 

194 

82571 

48181 

4.119e-4 

2.410e-3 

0.523 

4.350 

fem1ode A 

B 
57 

79 

9 

18 

164 

167 

1 

1 

23 

36 

113 

116 

2987466* 

4154929 

0.0225 

0.0224 

200.86 

168.92 

will1ode A 

B 
117 

117 

0 

0 

194 

170 

1 

1 

26 

26 

141 

117 

3652725 

3483056 

1.069e-6 

1.021e-6 

0.0038 

0.0036 

Medium accuracy solutions:  

ds1ode A 

B 
110 

125 

0 

1 

134 

129 

1 

1 

22 

27 

132 

127 

41218* 

43583 

1.0692e-10 

1.8782e-07 

1.0682e-07 

1.8763e-04 

ds2ode A 

B 
227 

250 

6 

10 

404 

273 

2 

2 

45 

53 

402 

271 

63887 

63875 

3.8673e-06 

4.3663e-06 

0.3850 

0.3713 

ds4ode A 

B 
156 

154 

59 

26 

354 

233 

29 

11 

91 

59 

352 

231 

73706 

59062 

3.3804e-06 

5.8989e-05 

0.0798 

0.0994 

fem1ode A 

B 
411 

399 

101 

98 

770 

647 

1 

1 

201 

195 

719 

596 

22653031 

21366984 

0.0013 

0.0012 

32.3111 

42.6499 

will1ode A 

B 
225 

224 

1 

1 

321 

279 

1 

1 

38 

38 

268 

226 

5818749 

5522525 

2.0356e-08 

1.9905e-08 

7.1613e-05 

7.0091e-05 

High accuracy solution:  

ds1ode A 

B 
138 

163 

2 

4 

171 

174 

1 

1 

28 

36 

169 

172 

50271* 

5440 

9.0049e-11 

1.921e-08 

8.996e-8 

1.920e-5 

ds2ode A 

B 
322 

315 

8 

10 

612 

341 

2 

2 

61 

62 

610 

339 

88793 

76754 

4.349e-7 

4.405e-7 

0.0546 

0.0526 

ds4ode A 

B 
174 

159 

44 

14 

381 

220 

21 

6 

76 

42 

379 

218 

73872 

53172 

4.387e-7 

6.971e-6 

0.0116 

0.0119 

fem1ode A 

B 
1231 

1219 

323 

321 

2232 

1913 

1 

1 

626 

621 

2181 

1862 

6966142 

6723222 

3.0938e-4 

3.102e-4 

10.098 

11.243 

will1ode A 

B 
301 

301 

2 

2 

429 

358 

1 

1 

49 

49 

376 

305 

7674510 

7170928 

1.008e-9 

1.170e-9 

3.547e-6 

4.168e-6 

 

Table 2: Statistics obtained for the test problems which are known to be dissipative for 

ode15s (code A) and newode15s (code B). The starred (*) entriesare for test problems where 

the modified code performs more flops. 
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Test 

Problem 

Code Time 

Steps 

Failed 

Steps 
 

evals 

 

Evals 

LUs Linear  

Solves 

Flop 

Count 
  

buiode A 

B 

66 

68 

6 

6 

129 

110 

2 

1 

18 

19 

122 

106 

36002 

35881 

4.071e-4 

4.125e-4 

1.108 

1.039 

brussode A 

B 

93 

112 

8 

6 

373 

241 

2 

1 

24 

27 

170 

139 

24498222 

23686772 

0.0104 

0.0280 

4.3730 

11.6329 

chm6ode A 

B 

170 

182 

2 

5 

227 

208 

2 

2 

35 

39 

216 

197 

71681* 

72967 

0.676 

1.272 

0.657 

1.522 

chm7ode A 

B 

55 

55 

0 

0 

71 

59 

1 

1 

12 

12 

67 

55 

20811 

20132 

1.657e-4 

1.703e-4 

0.596 

0.596 

chm9ode A 

B 

866 

1447 

254 

458 

2572 

2731 

81 

56 

366 

711 

2247 

2506 

463398* 

685062 

1.154e5 

1.157e5 

4.007e7 

5.445e7 

d1ode A 

B 

69 

108 

8 

16 

133 

154 

4 

3 

21 

36 

120 

144 

75165* 

86974 

0.0181 

0.0691 

0.762 

17.193 

ds1ode A 

B 

52 

60 

0 

0 

75 

62 

1 

1 

14 

16 

73 

60 

22634* 

23420 

4.972e-7 

1.835e-4 

4.967e-4 

1.834e-2 

ds2ode A 

B 

144 

180 

4 

12 

258 

212 

2 

2 

31 

45 

256 

210 

44062* 

52341 

7.808e-4 

9.960e-4 

4.457 

5.116 

ds4ode A 

B 

144 

180 

96 

35 

391 

196 

38 

17 

133 

66 

389 

194 

82571 

48181 

4.119e-4 

2.410e-3 

0.523 

4.350 

gearode A 

B 

19 

19 

1 

0 

33 

23 

2 

1 

6 

6 

26 

19 

23695 

23260 

1.658e-4 

1.659e-4 

0.252 

0.252 

hb1ode A 

B 

212 

320 

20 

33 

442 

451 

11 

6 

63 

109 

396 

455 

83788* 

1103232 

5.709er-5 

2.317e-4 

2.528 

9.020 

hb2ode A 

B 

578 

573 

49 

49 

793 

676 

2 

1 

116 

115 

786 

672 

158812 

151932 

1.680e8 

1.868e8 

0.330 

0.645 

vdpode A 

B 

823 

973 

854 

303 

2250 

1749 

39 

35 

331 

444 

2132 

1643 

338972* 

372079 

3.157 

3.100 

2.103e3 

2.103e3 

willode A 

B 

117 

117 

0 

0 

194 

170 

1 

1 

26 

26 

141 

117 

3652725 

3483056 

1.069e-6 

1.021e-6 

0.0038 

0.0036 

 

 

Table 3: Statistics obtained for ode15s (code A) and newode15s (code B) for thenonlinear test 

problems at low accuracy. The starred (*) entriesare for test problems where the modified 

code performs more flops. 
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Test 

Problem 

Code Time 

Steps 

Failed 

Steps 
 

evals 

 

Evals 

LUs Linear  

Solves 

Flop 

Count 
  

buiode A 

B 

86 

85 

1 

0 

122 

89 

2 

1 

16 

15 

115 

85 

45609 

43201 

7.0345e-7 

2.8035e-6 

0.0791 

2.7956 

brussode A 

B 

232 

237 

8 

10 

532 

361 

1 

1 

38 

40 

430 

259 

38145947 

35677605 

5.1709e-5 

6.0365e-5 

0.0238 

0.0290 

chm6ode A 

B 

283 

375 

2 

12 

398 

433 

2 

2 

47 

76 

387 

422 

113025* 

137989 

9.7389e-4 

98.003e-4 

0.3407 

1.4270 

chm7ode A 

B 

105 

105 

1 

1 

132 

111 

1 

1 

20 

20 

128 

107 

31817 

30815 

2.0935e-6 

2.1044e-6 

0.0063 

0.0063 

chm9ode A 

B 

2384 

5112 

298 

927 

5559 

7947 

67 

60 

520 

1608 

5290 

7706 

968658* 

1909656 

1.1208e3 

0.8677e3 

55.4688 

12.3361 

d1ode A 

B 

175 

583 

16 

93 

390 

858 

3 

3 

43 

176 

380 

848 

115190* 

226236 

9.2574e-5 

1.1.61e-4 

0.3084 

0.3084 

ds1ode A 

B 

110 

125 

0 

1 

134 

129 

1 

1 

22 

27 

132 

127 

41218* 

43583 

1.0692e-10 

1.8782e-7 

1.0682e-7 

1.8763e-4 

ds2ode A 

B 

227 

250 

6 

10 

404 

273 

2 

2 

45 

53 

402 

271 

63887 

63875 

3.8673e-6 

4.3663e-6 

0.3850 

0.3713 

ds4ode A 

B 

156 

154 

59 

26 

354 

233 

29 

11 

91 

59 

352 

231 

73706 

59062 

3.3804e-6 

5.8989e-5 

0.0798 

0.0994 

gearode A 

B 

35 

35 

0 

0 

49 

39 

1 

1 

10 

10 

45 

135 

35345 

34976 

1.5144e-7 

2.1741e-7 

1.5663e-4 

3.6314e-4 

hb1ode A 

B 

335 

668 

26 

96 

642 

1071 

16 

8 

81 

231 

576 

1037 

123055* 

242138 

2.3624e-6 

2.0614e-5 

0.8697 

9.3996 

hb2ode A 

B 

1365 

1361 

41 

39 

2395 

1443 

2 

1 

134 

131 

2388 

1439 

331713 

279043 

7.1225e5 

2.0069e6 

0.0025 

0.0025 

vdpode A 

B 

1651 

1928 

283 

312 

3854 

2745 

24 

26 

393 

487 

3781 

2666 

534215* 

539846 

0.0017 

0.0015 

46.8094 

41.4994 

willode A 

B 

225 

224 

1 

1 

321 

279 

1 

1 

38 

38 

268 

226 

5818749 

5522525 

2.0356e-8 

1.9905e-8 

7.1613e-5 

7.0091e-5 

 

Table 4: Statistics obtained for the nonlinear test problems for the originalode15s (A) and the 

newode15s (B) at medium accuracy solutions.The starred (*) entries are for test problems 

where the modified code performsmore flops. 

  



             IJMIE           Volume 4, Issue 4           ISSN: 2249-0558 
_______________________________________________________ 

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories 
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A. 

International Journal of Management, IT and Engineering 
http://www.ijmra.us 

 
261 

April 
2014 

Test 

Problem 

Code Time 

Steps 

Failed 

Steps 
 

evals 

 

Evals 

LUs Linear  

Solves 

Flop 

Count 
  

Buiode A 

B 

115 

118 

2 

0 

170 

122 

2 

1 

21 

20 

163 

118 

57691 

55510 

1.135e-7 

3.582e-6 

0.0791 

2.7956 

Brussod

e 

A 

B 

344 

344 

10 

10 

712 

466 

1 

1 

51 

51 

610 

364 

51295624 

45780199 

6.065e-6 

8.645e-6 

0.0238 

0.0290 

chm6ode A 

B 

686 

1378 

20 

67 

1470 

1722 

2 

3 

115 

284 

1459 

1706 

317963* 

491702 

6.320e-6 

1.374e-4 

0.3407 

1.4270 

chm7ode A 

B 

142 

142 

2 

2 

178 

150 

1 

1 

27 

27 

174 

146 

40312 

38978 

3.220e-7 

3.220e-7 

0.0063 

0.0063 

chm9ode A 

B 

5989 

27341 

494 

3158 

11960 

38198 

66 

67 

1000 

6496 

11695 

37929 

2111245* 

8424935 

25.663 

36.164 

55.4688 

12.3361 

d1ode A 

B 

403 

973 

10 

144 

1019 

1384 

2 

3 

93 

290 

1012 

1374 

200903* 

337027 

3.036e-7 

1.520e-6 

0.3084 

0.3084 

ds1ode A 

B 

138 

163 

2 

4 

171 

174 

1 

1 

28 

36 

169 

172 

50271* 

54440 

9.005e-11 

1.921e-8 

1.0682e-7 

1.8763e-4 

ds2ode A 

B 

322 

315 

8 

10 

612 

341 

2 

2 

61 

62 

610 

339 

88793 

76754 

4.349e-7 

4.405e-7 

0.3850 

0.3713 

ds4ode A 

B 

174 

159 

44 

14 

381 

220 

21 

6 

76 

42 

379 

218 

73872 

53172 

4.387e-7 

6.971e-6 

0.0798 

0.0994 

Gearode A 

B 

46 

45 

0 

0 

65 

50 

1 

1 

11 

11 

61 

46 

43976 

43200 

1.514e-7 

2.174e-7 

1.5663e-4 

3.6314e-4 

hb1ode A 

B 

451 

851 

27 

124 

840 

1335 

15 

10 

96 

282 

778 

1293 

159399* 

308995 

2.177e-7 

1.149e-6 

0.8697 

9.3996 

hb2ode A 

B 

3523 

3545 

49 

56 

6098 

3666 

2 

2 

250 

263 

6091 

3659 

799092 

676348 

5.917e3 

3.114e3 

0.0025 

0.0025 

Vdpode A 

B 

3342 

4235 

326 

510 

6093 

5508 

31 

30 

515 

852 

5999 

5417 

846205* 

1026181 

1.008e-9 

1.170e-9 

46.8094 

41.4994 

Willode A 

B 

301 

301 

2 

2 

429 

358 

1 

1 

49 

49 

376 

305 

7674510 

7170928 

1.008e-9 

1.170e-9 

7.1613e-5 

7.0091e-5 

 

Table 5: Statistics obtained for the nonlinear test problems for the originalode15s (A) and the 

newode15s (B) at high accuracy.The starred (*) entries are for test problems where the 

modified code performs more flops. 

 

5Conclusions 

The error norms in our tables for the various test problems confirm that the solutions obtained 

using newode15s have similar accuracy to the solutions obtainedusing ode15s. There are a 

very small number of exceptions to this statement.    Of particular interest in the results are 

the total number of linear algebraicequations solves (linear solves), that is the number of 

forward and backwardsubstitutions and the total number of function evaluations. For test 

problemssatisfying the assumptions of the theory of Dorsselaer and Spijker [24] and wherethe 

Jacobian is analytically computed, we expect the Newton iterations to beterminated after 1 

(one) iterations. For the general test problems we anticipatethat the new termination strategy 

will reduce the number of Newton iterations,i.e. forward and backward substitutions and to 

reduce the number of functionevaluations. 

    The theory is trivially illustrated by the statistics obtained for the linear testproblems, 

a2ode, a3ode and b5ode (Table 1) These problems have analytical(constant) Jacobians. In 

most cases only 1 Newton iteration per time step isrequired to satisfy our termination strategy 

and there is a significant reductionin linear solves and function evaluations. This is clear from 

Table 6 which showspercentage reductions in linear solves, function evaluations and flop 

counts forthe test problems a2ode, a3ode and b5ode for all levels of accuracy. 

 Test problem: a2ode 
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Table 6: Percentage savings of function evaluations, linear solves and flop counts due to the 

modified code for linear test problems a2ode, a3ode and b5ode. 

We notice that for linear test problems Table 1, the problem a2ode, a3odeand b5ode, have 

constant Jacobians, so the simplified Newton iteration willconverge in one Newton iteration. 

However in ode15s, the convergence testsare based on, initially, the predicted value . 

Hence sometimes two iterations(at most) will be required to satisfy the convergence test.  

    For the large, linear, constant Jacobian test problem fem1ode, we note thatfor low accuracy 

solutions the modified code performs more flops. This could beattributed to a possible 

collapse in the step size strategy for the modified code.But as the accuracy is increased 

(medium and high accuracy) the modified codeperforms less steps. This shows the 

significance of the asymptotic condition,as, . For the linear, time-dependent Jacobian 

test problem fem2ode the higher flop count of the modified code for all levels of accuracy is 

mainly due to the collapse in the stepsize. Notethat there is no guarantee that a collapsed 

stepsize strategy will be stabilisedby the asymptotic condition (i.e. by demanding higher 

accuracy). 

    The theory is also verified (despite the Jacobian matrix being computednumerically) by the 

large, dissipative, nonlinear test problem will1ode For thistest problem only one(1) Newton 

iteration is required at each integration stepas predicted by the theory. Also see Table 2 for 

dissipative test problems. Thesavings in function evaluations and linear solves are significant 

as indicated inTable 7 that shows percentage savings for this test problem. 

 

Test Problem: will1ode 

     Percentage savings 

Level of 

Accuracy 

Code Func 

evals 

Linear 

solves 

Flop 

Count 

Func evals Linear 

solves 

Flop 

count 

Low A 

B 

154 

131 

142 

119 

121599 

115022 

 

14.94 

 

16.20 

 

5.41 

Medium A 

B 

277 

222 

265 

210 

208309 

192530 

 

19.86 

 

20.75 

 

7.57 

High A 

B 

357 

297 

344 

284 

271587 

254603 

 

16.81 

 

17.44 

 

6.25 

Test problem: a3ode 

     Percentage savings 

Level of 

Accuracy 

Code Func 

evals 

Linear 

solves 

Flop 

Count 

Func evals Linear 

solves 

Flop 

count 

Low A 

B 

282 

144 

276 

138 

81953 

69623 

 

48.94 

 

50.00 

 

15.05 

Medium A 

B 

462 

236 

456 

230 

132381 

112287 

 

48.92 

 

49.56 

 

15.18 

High A 

B 

676 

346 

670 

340 

180291 

150971 

 

48.82 

 

49.25 

 

16.26 

Test problem: b5ode 

     Percentage savings 

Level of 

Accuracy 

Code Func 

evals 

Linear 

solves 

Flop 

Count 

Func evals Linear 

solves 

Flop 

count 

Low A 

B 

2774 

1531 

2706 

1523 

676899 

497381 

 

44.81 

 

43.72 

 

26.62 

Medium A 

B 

5664 

2837 

5656 

2829 

1289519 

876791 

 

49.91 

 

49.98 

 

32.01 

High A 

B 

12116 

6064 

12108 

6056 

2713944 

1830380 

 

49.95 

 

49.98 

 

32.56 
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     Percentage savings 

Level of 

Accuracy 

 

Code 

Func 

evals 

Linear  

solves 

Flop 

Calculation 

Func evals Linear 

solves  

Flop count 

Low A 

B 

194 

170 

141 

117 

3652725 

3483056 

 

12.37 

 

17.02 

 

4.64 

Medium A 

B 

321 

279 

268 

226 

5818749 

5522525 

 

13.08 

 

15.67 

 

5.09 

High A 

B 

429 

358 

376 

305 

7674510 

7170928 

 

16.55 

 

18.88 

 

6.56 

Table 7: Percentage savings of function evaluations, linear solves and flop counts due to the 

modified code for the nonlinear test problem will1ode. 

 

    We also note a general agreement with the theory for some of the nonlineartest problems 

despite the fact that most Jacobians are computed numericallyand their dissipativity is not 

known. This is shown by the test problems chm7odeand gearode Table 8 shows the 

percentage savings. 

    It is also interesting to note that for some test problems the ‟crash‟ in thestep size strategy 

leads to reduced time steps and hence an overall reduction in flop counts. Test problems 

showing this behaviour include ds4ode, hb2ode andhb3ode. In fact for hb2ode and hb3ode 

the step size behaviour for the modifiedcode almost follow the same curve as the original 

code. 

    We therefore conclude that the new termination strategy can lead to significant 

computational savings when used in solving stiff systems of ODEs withanalytical (constant) 

Jacobians, particularly if the system is large and the function is computationally expensive 

to evaluate. 

Test Problem: chm7ode 

     Percentage savings 

Level of 

Accuracy 

 

Code 

Func 

evals 

Linear  

solves 

Flop 

Calculation 

Func evals Linear 

solves  

Flop count 

Low A 

B 

71 

59 

67 

55 

20811 

20132 

 

16.90 

 

17.91 

 

3.26 

Medium A 

B 

132 

111 

128 

107 

31817 

30815 

 

15.91 

 

16.41 

 

3.15 

High A 

B 

178 

150 

174 

146 

40312 

38978 

 

15.73 

 

16.09 

 

3.31 

 

Test Problem: gearode 

     Percentage savings 

Level of 

Accuracy 

 

Code 

Func 

evals 

Linear  

solves 

Flop 

Calculation 

Func evals Linear 

solves  

Flop count 

Low A 

B 

33 

23 

26 

19 

23695 

23260 

 

30.30 

 

26.92 

 

1.84 

Medium A 

B 

49 

39 

45 

35 

35345 

34976 

 

20.41 

 

22.22 

 

1.04 

High A 

B 

65 

50 

61 

46 

43976 

43200 

 

23.08 

 

24.59 

 

1.76 

 

Table 8: Percentage savings of function evaluations, linear solves and flop countsdue to the 

modified code for the nonlinear test problems chm7ode and gearode. 

 



             IJMIE           Volume 4, Issue 4           ISSN: 2249-0558 
_______________________________________________________ 

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories 
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A. 

International Journal of Management, IT and Engineering 
http://www.ijmra.us 

 
264 

April 
2014 

 The results of investigating the significance of the asymptotic condition,as, , on the test 

problem ds1ode further reveal that our new terminationstrategy is ideal for high accuracy 

solutions As we demand more accuracy the flop counts for the modified code are reduced 

relative to the flop counts of the original code. This is also illustrated by the steady increase 

in the percentage savings in flop counts as higher accuracy is demanded for test problems 

a3odeopand b5ode in Table 8 and will1ode in Table 7. 

     Despite the general agreement with the theory for some of the test problems,we observe 

that our new strategy leads to an increase in computational costs forsome test problems as 

indicated by stars in our Tables. For the starred problems we observe that the modified code 

(B) performs more LU decompositions thanthe original code (A). This is mainly because of 

the increased number of timesteps possibly due to the contaminated stepsize. Increased 

number of time stepsleads to an increase in the number of LU factorizations performed and 

hence anincrease in the overall computational cost. It must be noted that for some 

testproblems the reduction in linear solves and function evaluations outweighs theincrease in 

number of time steps (and hence LU decompositions) resulting inlower computational costs 

for the modified code. This can be seen in the large,nonlinear test problem, brussode. Also 

note that for brussode, the stepsizestrategy stabilises as accuracy is increased (see Table 5). 

     The safe use of the new termination strategy requires a more robust step sizestrategy than 

the one currently in ode15s. The stepsize strategy in the modified code (adopted from the 

original code) is not robust enough to handle theperturbations in the error estimate due to the 

new stopping criterion. It shouldalso be noted that some of the test problems used in our 

experiments might notsatisfy the basic assumptions (a.1) and (a.2) discussed earlier. 

 

6    Suggestions for future research 

It has been established that the new stopping criterion can significantly reduces the number of 

function evaluations and forward and backward substitutions.As demonstrated by some test 

problems it is clear that a more robust stepsizestrategy is required if the new termination 

strategy is to be safely used. Thiswould significantly reduce the number of time steps taken 

and hence the LUfactorizations. 

    A possible way of minimizing the contamination of the predicted stepsize isto use not only 

the error at the previous step , but to use in some way, say bythe process of extrapolation 

or interpolation, the previous error estimates to estimate the error at the 

next time step and hence predict thestepsize . 
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